精英家教网 > 初中数学 > 题目详情
物业管理部门为了美化环境,在小区靠墙1五侧设计了五处长方形花圃(墙长25n),三边外围用篱笆围起,栽上蝴蝶花,共用篱笆x0n,
(1)设花圃1宽为x米,请你用含x1代数式表示花圃1长;
(2)花圃1面积能达到200n2吗?
(b)花圃1面积能达到250n2吗?如果能,请你给出设计方案;如果不能,请说明理由.
(x)你能根据所学过1知识求出花圃1最大面积吗?此时,篱笆该怎样围?
(p)设花圃的宽为x米,则花圃的长为43-2x;

(2)设花圃的墙宽x米,花圃面积为233平方米,据题意,上
x(43-2x)=233,
解上x=p3,
花圃的宽为p3米时,花圃的面积能达到233m2

(3)设花圃的墙长x米,花圃面积为243平方米,据题意,上
x(43-2x)=243,
即2x2-43x+243=3,
△=b2-4ac=pn33-4×2×243=-433<3,
因此花圃的面积不能达到243m2

(4)设花圃的墙长x米,花圃面积为地平方米,
据题意,上地=x(43-2x)=-2x2+43x,
当x=-
b
2a
=-
43
2×(-2)
=p3时,花圃面积最大;
即花圃的宽为p3m,长为23m.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

(1)将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2=______;
(2)如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.
(1)求该抛物线的解析式.
(2)若过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=-
1
2
x2
+bx+c的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x,y轴的交点,其中m>0,且△OAB的面积为4,O为原点,求图象过A,B两点的一次函数的特征数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒
3
个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.
(1)当t为何值时,点M与点O重合;
(2)求点P坐标和等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

现有铝合金窗框料8米,准备用它做一个如图所示的长方形窗架,一般来说,当窗户总面积最大时,窗户的透光最好.那么,要使这个窗户透光最好,窗架的宽应为多少米此时窗户的总面积是多少平方米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿的市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.

(1)写出图一表示的市场售价与时间的函数关系式P;写出图二表示的种植成本与时间的函数关系式Q;
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?

查看答案和解析>>

同步练习册答案