精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+3经过点A(1,0)和B(3,0),点C(m,
15
)在抛物线的对称轴上.
(1)求抛物线的函数表达式.
(2)求证:△ABC是等腰三角形.
(3)动点P在线段AC上,从点A出发以每钞1个单位的速度向C运动,同时动点Q在线段AB上,从B出发以每秒1个单位的速度向A运动.当Q到达点A时,两点同时停止运动.设运动时间为t秒,求当t为何值时,△APQ与△ABC相似.
(1)把A(1,0)和B(3,0)代入y=ax2+bx+3得:
a+b+3=0
9a+3b+3=0

解得:
a=1
b=-4

∴抛物线的函数解析式是y=x2-4x+3.

(2)抛物线的对称轴是x=2,
∵点C(m,
15
)在抛物线对称轴上,
∴m=2,
∴点C(2,
15
),
∴CA=
1+15
=4,CB=
1+15
=4,
∴CA=CB
∴△ABC是等腰三角形.

(3)∠A是公共角,
①当∠APQ=∠ACB时,△APQ△ACB,
∵AB=2,AC=4,AP=t,AQ=2-t,
t
4
=
2-t
2

解得:t=
4
3

②当∠APQ=∠ABC时,△APQ△ABC,
∵AB=2,AC=4,AP=t,AQ=2-t,
t
2
=
2-t
4

∴t=
2
3

∴当t=
4
3
或t=
2
3
时,△APQ与△ABC相似.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c的交x轴于点A和点B(-2,0),与y轴的负半轴交于点C,且线段OC的长度是线段OA的2倍,抛物线的对称轴是直线x=1.
(1)求抛物线的解析式;
(2)若过点(0,-5)且平行于x轴的直线与该抛物线交于M、N两点,以线段MN为一边抛物线上与M、N不重合的任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,请你求出S关于点P的纵坐标y的函数解析式;
(3)当0<x≤
10
3
时,(2)中的平行四边形的面积是否存在最大值?若存在,请求出来;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在抛物线y=-
2
3
x2
上取B1
3
2
,-
1
2
),在y轴负半轴上取一个点A1,使△OB1A1为等边三角形;然后在第四象限取抛物线上的点B2,在y轴负半轴上取点A2,使△A1B2A2为等边三角形;重复以上的过程,可得△A99B100A100,则A100的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数y=-
3
2
x2+bx
经过点O、A、B三点,且A点坐标为(4,0),B的坐标为(m,2
3
),点C是抛物线在第三象限的一点,且横坐标为-2
(1)求抛物线的解析式和直线BC的解析式.
(2)直线BC与x轴相交于点D,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=
3
5
x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接BD.
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c的顶点为A(3,-3),与x轴的一个交点为B(1,0).
(1)求抛物线的解析式.
(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P0的坐标.
(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P0、B、C为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.
(1)求出直线OC的解析式及经过O、A、C三点的抛物线的解析式.
(2)试在(1)中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直接写出点D的坐标.
(3)设从出发起,运动了t秒.如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.
(4)设从出发起,运动了t秒.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线y=x2-4x+3与x轴分别交于A、B两点,交y轴于点C.
(1)求线段AC的长;
(2)求tan∠CBA的值;
(3)连接AC,试问在x轴左侧否存在点Q,使得以C、O、Q为顶点的三角形和△OAC相似?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用一段长为30m的篱笆围出一个一边靠墙的矩形菜园,墙长为18m.设矩形的一边长为xm,面积为ym2
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)菜园的面积能否达到120m2?说明理由.

查看答案和解析>>

同步练习册答案