精英家教网 > 初中数学 > 题目详情

过A、B、C三点中两点作直线,小明说有三条,小林说有一条,小颖说不是一条就是三条,你认为________的说法是对的.

小颖
分析:本题中三点的位置关系不明确,应分情况讨论.
解答:若A、B、C三点共线,则只能做一条直线
若三点不共线,则可作三条直线,分别为直线AB、直线AC、直线BC
故小颖的说法正确.
点评:本题涉及直线的知识,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,等腰梯形OABC,CB∥OA,且点A在x轴正半轴上.已知C(精英家教网2,4),BC=4.
(1)求过O、C、B三点的抛物线解析式,并写出顶点坐标和对称轴;
(2)经过O、C、B三点的抛物线上是否存在P点(与原点O不重合),使得P点到两坐标轴的距离相等?如果存在,求出P点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,两个一次函数y=x,y=-2x+12的图象相交于点A,动点E从O精英家教网点出发,沿OA方向以每秒1个单位的速度运动,作EF∥y轴与直线BC交于点F,以EF为一边向x轴负方向作正方形EFMN,设正方形EFMN与△AOC的重叠部分的面积为S.
(1)求点A的坐标;
(2)求过A、B、O三点的抛物线的顶点P的坐标;
(3)当点E在线段OA上运动时,求出S与运动时间t(秒)的函数表达式;
(4)在(3)的条件下,t为何值时,S有最大值,最大值是多少?此时(2)中的抛物线的顶点P是否在直线EF上,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知抛物线y=mx2-(m-5)x-5(m>0)与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=6.
(1)求抛物线和直线BC的解析式;
(2)在给定的直角坐标系中,画出抛物线和直线BC;
(3)若⊙P过A、B、C三点,求⊙P的半径;
(4)抛物线上是否存在点M,过点M作MN⊥x轴于点N,使△MBN被直线BC分成面积比为1:3的两部分?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盐城模拟)如图(1),分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上)交y轴于另一点Q,抛物线y=
14
x2+bx+c
经过A、C两点,与x轴的另一交点为G,M是FG的中点,B点坐标为(2,2).
(1)求抛物线的函数解析式和点E的坐标;
(2)求证:ME是⊙P的切线;
(3)如图(2),点R从正方形CDEF的顶点E出发以1个单位/秒的速度向点F运动,同时点S从点Q出发沿y轴以5个单位/秒的速度向上运动,连接RS,设运动时间为t秒(0<t<1),在运动过程中,正方形CDEF在直线RS下方部分的面积是否变化?若不变,说明理由并求出其值;若变化,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•巴中)已知如图所示,在平面直角坐标系中,四边形ABC0为梯形,BC∥A0,四个顶点坐标分别为A(4,0),B(1,4),C(0,4),O(0,O).一动点P从O出发以每秒1个单位长度的速度沿OA的方向向A运动;同时,动点Q从A出发,以每秒2个单位长度的速度沿A→B→C的方向向C运动.两个动点若其中一个到达终点,另一个也随之停止.设其运动时间为t秒.
(1)求过A,B,C三点的抛物线的解析式;
(2)当t为何值时,PB与AQ互相平分;
(3)连接PQ,设△PAQ的面积为S,探索S与t的函数关系式.求t为何值时,S有最大值?最大值是多少?

查看答案和解析>>

同步练习册答案