精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.

1.求b+c的值

2.若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;

3.在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

 

【答案】

 

1.因为抛物线y=-x2+bx+c与y轴正半轴交于点B,所以点B的坐标为(0,c).…… 1分

因为OA=OB,所以点A的坐标为(-c,0).…… 2分

将点A(-c,0)代入y=-x2+bx+c,得-c2+bc+c=0.

因为c≠0,整理,得b+c=1.…… 4分

2.如果四边形OABC是平行四边形,那么BC//AO,BC=AO.

因此点C的坐标可以表示为(c,c).…… 5分

当点C(c,c)落在抛物线y=-x2+bx+c上时,得-c2+bc+c=c.

整理,得b=c.…… 6分

结合第(1)题的结论b+c=1,得.…… 7分

此时抛物线的解析式为.…… 8分

3.过点P作PM⊥y轴,垂足为M.

因为BP平分∠CBO,所以△BPM是等腰直角三角形.9分

设点P的坐标为

由BM=PM,列方程.…… 10分

解得(舍去).…… 11分

所以,点P的坐标为.…… 12分

【解析】(1)因为抛物线y=-x2+bx+c与y轴正半轴交于点B,所以点B的坐标为(0,c).点A的坐标为(-c,0).代入y=-x2+bx+c,求得b+c的值

(2)根据四边形OABC是平行四边形,得出点C的坐标可以表示为(c,c)进行解答

(3)过点P作PM⊥y轴,垂足为M.证得△BPM是等腰直角三角形

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=x-ax+a-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.

(1)求a的值;

(2)当四边形ODPQ为矩形时,求这个矩形的面积;

(3)当四边形PQBC的面积等于14时,求t的值.

(4)当t为何值时,△PBQ是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

(9分)如图,已知抛物线yx2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.

(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,
求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形
为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省苏州市中考模拟数学卷 题型:解答题

(本题9分)如图,已知抛物线yax2bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点.

【小题1】(1)求抛物线的解析式;
【小题2】(2)求点D的坐标,并在图中画出直线BD;
【小题3】(3)求出直线BD的一次函数解析式,并根据图象回答:当x满足什么条件时,上述二次函数的值大于该一次函数的值.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年苏州工业园区九年级下学期学科调研数学卷 题型:解答题

(9分)如图,已知抛物线yx2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.

(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,
求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形
为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年陕西省兴平市九年级上学期期末练习数学卷 题型:解答题

(本题满分10分)

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.

1.(1)求这条抛物线所对应的函数关系式;

2.(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;

3.(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

 

 

查看答案和解析>>

同步练习册答案