Èçͼ£¬¶þ´Îº¯Êýy=x2¾­¹ýÈýµãA¡¢B¡¢O£¬ÆäÖÐOÎª×ø±êÔ­µã£®µãAµÄ×ø±êΪ£¨1£¬1£©£¬¡ÏBAO=90¡ã£¬AB½»yÖáÓÚµãC£®
£¨1£©ÇóµãC¡¢µãB×ø±ê£»
£¨2£©Èô¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄͼÏó¾­¹ýA¡¢BÁ½µã£¬ÇÒ¶Ô³ÆÖá¾­¹ýRt¡÷BAOµÄÍâ½ÓÔ²Ô²ÐÄ£¬Çó¸Ã¶þ´Îº¯Êý½âÎöʽ£»
£¨3£©Èô¶þ´Îº¯Êýy=ax2+bx+c£¨a£¾0£©µÄͼÏó¾­¹ýA¡¢BÁ½µã£¬ÇÒÓëxÖáÓо«Ó¢¼Ò½ÌÍøÁ½¸ö²»Í¬µÄ½»µã£¬ÊÔÇó³öÂú×ã´ËÌõ¼þµÄÒ»¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£®
·ÖÎö£º£¨1£©¿ÉÏÈÇóÖ±ÏßABµÄ½âÎöʽ£¬È»ºóÔÙÇóC¡¢BµÄ×ø±ê£®ÓÉÓÚÖ±ÏßABÓëÖ±ÏßOA´¹Ö±£¬Òò´ËÁ½Ö±ÏßµÄбÂʵij˻ýΪ-1£¬ÏÈÇó³öÖ±ÏßOAµÄ½âÎöʽ£¬È»ºó½«AµãµÄ×ø±ê´úÈëÖ±ÏßABÖм´¿ÉÇó³öÖ±ÏßABµÄ½âÎöʽ£®
£¨2£©Ö±½ÇÈý½ÇÐÎBAOµÄÍâ½ÓÔ²µÄÔ²ÐıØÎªOBµÄÖе㣬Òò´ËÅ×ÎïÏߵĶԳÆÖá·½³ÌÓ¦¸ÃÊÇBµãºá×ø±êµÄÒ»°ë£¬È»ºóÔÚ½²A¡¢B×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽÖм´¿ÉÇó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£®
£¨3£©½«A¡¢BµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬ÓÃaÌæ»»µôb¡¢c£¬È»ºó¸ù¾ÝÅ×ÎïÏßÓëxÖáÓÐÁ½¸ö½»µã£¬ÄÇôy=0ʱ·½³ÌµÄ¡÷£¾0£¬¾Ý´Ë¿ÉÇó³öaµÄȡֵ·¶Î§£¬¾Ý´Ë¿ÉÅжϳö¶þ´Îº¯ÊýµÄ½âÎöʽ£®
½â´ð£º½â£º£¨1£©Ò×ÖªÖ±ÏßOAµÄ½âÎöʽΪy=x£¬ÓÉÓÚOA¡ÍAB£¬ÉèÖ±ÏßABµÄ½âÎöʽΪy=-x+h£®
ÔòÓУº-1+h=1£¬h=2£¬
¡àÖ±ÏßABµÄ½âÎöʽΪy=-x+2£®
¡àC£¨0£¬2£©£®
ÓÉÓÚBÊÇÖ±ÏßABÓëÅ×ÎïÏßy=x2µÄ½»µã£¬
ÔòÓÐ
y=x2
y=-x+2
£¬
½âµÃ
x=1
y=1
£¬
x=-2
y=4
£¬
¡àB£¨-2£¬4£©£®

£¨2£©ÓÉÌâÒâ¿ÉÖª£º¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄ¶Ô³ÆÖáΪx=-1£®
ÔòÓУº
a+b+c=1
4a-2b+c=4
-
b
2a
=-1
£¬
½âµÃ
a=-1
b=-2
c=4
£¬
¡ày=-x2-2x+4£®

£¨3£©¸ù¾ÝÌâÒâÓУº
a+b+c=1
4a-2b+c=4
£¬
½âµÃ
b=a-1
c=2-2a
£¬
¡ày=ax2-£¨a-1£©x+2-2a£¬
ÓÉÓÚÅ×ÎïÏßÓëxÖáÓÐÁ½¸ö²»Í¬½»µã£¬
Áîy=0£¬ax2-£¨a-1£©x+2-2a=0£¬
¡÷=£¨a-1£©2-4a£¨2-2a£©=9a2-10a+1=£¨9a-1£©£¨a-1£©£¾0£¬ÇÒa£¾0
¡à0£¼a£¼
1
9
»òa£¾1£¬
¡à¶þ´Îº¯ÊýµÄ½âÎöʽΪy=2x2-x-2£¨´ð°¸²»Î¨Ò»£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÒ»´Îº¯ÊýÓë¶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢º¯ÊýͼÏó½»µãÒÔ¼°Ò»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµµÈ֪ʶµã£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬¶þ´Îº¯ÊýµÄͼÏó¾­¹ýµãD£¨0£¬
7
9
3
£©£¬ÇÒ¶¥µãCµÄºá×ø±êΪ4£¬¸ÃͼÏóÔÚxÖáÉϽصõÄÏß¶ÎABµÄ³¤Îª6£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÔÚ¸ÃÅ×ÎïÏߵĶԳÆÖáÉÏÕÒÒ»µãP£¬Ê¹PA+PD×îС£¬Çó³öµãPµÄ×ø±ê£»
£¨3£©ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹¡÷QABÓë¡÷ABCÏàËÆ£¿Èç¹û´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¶þ´Îº¯ÊýͼÏóµÄ¶¥µãÎª×ø±êÔ­µãO£¬ÇÒ¾­¹ýµãA£¨3£¬3£©£¬Ò»´Îº¯ÊýµÄͼÏó¾­¹ýµãAºÍµãB£¨6£¬0£©£®
£¨1£©Çó¶þ´Îº¯ÊýÓëÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Èç¹ûÒ»´Îº¯ÊýͼÏóÓëyÏཻÓÚµãC£¬µãDÔÚÏß¶ÎACÉÏ£¬ÓëyÖáÆ½ÐеÄÖ±ÏßDEÓë¶þ´Îº¯ÊýͼÏóÏཻÓÚµãE£¬¡ÏCDO=¡ÏOED£¬ÇóµãDµÄ×ø±ê£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖá½»ÓÚB¡¢CÁ½µã£¬ÓëyÖá½»ÓÚµãA£¨0£¬-3£©£¬¡ÏABC=45¡ã£¬¡ÏACB=60¡ã£¬ÇóÕâ¸ö¶þ´Îº¯Êý½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ij¹«Ë¾ÍƳöÁËÒ»ÖÖ¸ßЧ»·±£ÐÍÏ´µÓÓÃÆ·£¬Äê³õÉÏÊк󣬹«Ë¾¾­ÀúÁË´Ó¿÷Ëðµ½Ó¯ÀûµÄ¹ý³Ì£¬ÈçͼµÄ¶þ´Îº¯ÊýͼÏ󣨲¿·Ö£©¿Ì»­Á˸ù«Ë¾Äê³õÒÔÀ´ÀÛ»ýÀûÈós£¨ÍòÔª£©Óëʱ¼ät£¨Ô£©Ö®¼äµÄ¹ØÏµ£¨¼´Ç°t¸öÔµÄÀûÈó×ܺÍsÓëtÖ®¼äµÄ¹ØÏµ£©£®¸ù¾ÝͼÏóÌṩµÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÇóÀÛ»ýÀûÈós£¨ÍòÔª£©Óëʱ¼ät£¨Ô£©Ö®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨2£©Çó½ØÖ¹µ½¼¸ÔÂÄ©¹«Ë¾ÀÛ»ýÀûÈó¿É´ï30ÍòÔª£»
£¨3£©´ÓµÚ¼¸¸öÔÂÆð¹«Ë¾¿ªÊ¼Ó¯Àû£¿¸ÃÔ¹«Ë¾Ëù»ñÀûÈóÊǶàÉÙÍòÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖáÏཻÓÚÁ½¸öµã£¬¸ù¾ÝͼÏó»Ø´ð£º£¨1£©b
£¾
£¾
0£¨Ìî¡°£¾¡±¡¢¡°£¼¡±¡¢¡°=¡±£©£»
£¨2£©µ±xÂú×ã
x£¼-4»òx£¾2
x£¼-4»òx£¾2
ʱ£¬ax2+bx+c£¾0£»
£¨3£©µ±xÂú×ã
x£¼-1
x£¼-1
ʱ£¬ax2+bx+cµÄÖµËæxÔö´ó¶ø¼õС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸