精英家教网 > 初中数学 > 题目详情
(2013•翔安区一模)如图,在平行四边形ABCD中,AE⊥BC于点E,DF 平分∠ADC交线段AE于点F.
(1)如图1,若AE=AD,∠ADC=60°,请探索线段CD与AF+BE之间所满足的数量关系;
(2)如图2,若AE=AD,则你在(1)中得到的结论是否仍然成立?若成立,对你的结论加以证明;若不成立,请说明理由.
分析:(1)求出BE=
1
2
AB,证△ADF≌△EAB,推出AF=BE,即可得出答案.
(2)延长FA至G,使AG=BE,证△GAD≌△BEA,推出DG=AB,求出GD=GF,即可推出答案.
解答:解:(1)CD=AF+BE,
理由是:如图,∵∠ADC=60°,DF平分∠ADC,
∴∠ADF=∠CDF=30°,
∵平行四边形ABCD,
∴∠B=∠ADC=60°,AD∥BC,AB=CD,
∵AE⊥BC,
∴∠DAF=∠AEB=90°,
∴∠BAE=30°=∠ADF,
∴BE=
1
2
AB=
1
2
CD,
在△ADF和△EAB中,
∠ADF=∠BAE
AD=AE
∠DAF=∠AEB

∴△ADF≌△EAB(ASA),
∴AF=BE=
1
2
CD,
∴CD=AF+BE.

(2)结论仍然成立.
证明:如图,延长FA至G,使AG=BE,
在△DAG和△AEB中,
AD=AE
∠GAD=∠AEB
AG=BE

∴△DAG≌△AEB(SAS),
∴∠GDA=∠BAE,GD=AB=CD,
又∵平行四边形ABCD中,AE⊥BC,
∴∠BAE+∠ADC=90°,
∴∠GDF=90°-∠CDF,
在Rt△DAF中,∠AFD=90°-∠ADF,
∴∠GFD=∠GDF,
∴GF=GD,
∴GD=AF+AG,
∴CD=AF+BE.
点评:本题考查了全等三角形的性质和判定,平行四边形的性质的应用,主要考查学生运用定理进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•翔安区一模)下列四个几何体中,俯视图是长方形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•翔安区一模)某鞋店试销一种新款女鞋,并对销售情况进行统计,那么,下列四个数据中,对于这个鞋店经理来说,最有意义的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•翔安区一模)如果一个多边形的内角和等于540°,那么,这个多边形的边数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•翔安区一模)如图,若∠C=50°,则∠AOB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•翔安区一模)计算a•a的结果是(  )

查看答案和解析>>

同步练习册答案