精英家教网 > 初中数学 > 题目详情

如图在抛物线y=x(a-x)(a>0)与x轴所围图形的内接矩形ABCD(边BC在x轴上)中,当矩形周长最大时,它的两边长AB=________,BC=________.

    2
分析:如图,设B(x,0),0<x<,然后根据已知条件可以分别用x表示相等BC、AB的长度,接着就可以用x表示矩形ABCD的周长,最后利用二次函数的性质即可解决问题.
解答:解:如图所示:
矩形ABCD中,设B(x,0),0<x<
则C(a-x,0),
则BC=(a-x)-x=a-2x,AB=x(a-x),
∴矩形周长C=2[x(a-x)+(a-2x)]
=-2(x-2+
当x=时,即BC=a-2×=2,AB=(a-)=时,周长最大.
故答案为:,2.
点评:此题主要考查了抛物线与x轴的交点坐标,解题的关键是利用交点坐标分别表示线段的长度,最后利用二次函数的最值求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=-
1
2
x2+
3
2
x+2交x轴于A、B两点,交y轴于点C.
(1)求证:△ABC为直角三角形;
(2)在y轴上找点P,连接PB,若△PBC为等腰三角形,求:点P的坐标;
(3)在抛物线BC上取点E,连接CE和BE,△BCE的面积是否存在最大值?若存在,求出点E的坐标及△BCE的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c的顶点为A(-3,2),与x轴相交于点C(-2,0),过点C画CB⊥AC交y轴于点B,连结AB得△ABC
(1)求抛物线的解析式;
(2)求出点B的坐标;(提示:作抛物线的对称轴)
(3)将△ABC沿x轴正方向平移后得到△A′B′C′,点A′、B′恰好落在双曲线上,求该双曲线的解析式和平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点,点M为抛物线的顶点.
(1)求A,B两点的坐标;
(2)是否存在以BM为斜边的Rt△BCM的抛物线?若存在,请求出抛物线的解析式;如果不存在,请说明理由;
(3)在(2)的条件下,若抛物线上有一点P,连接PC交线段BM于Q点,且S△BPQ=S△CMQ,请写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-
1
3
x2+
2
3
mx+n(其中m,n为常数且m>n)与y轴正半轴交于A点,它的对称轴交x轴正半轴于C点,抛物线的顶点为P,Rt△ABC的直角顶点B在对称轴上,当它绕点C按顺时针方向旋转90°得到Rt△A′B′C.
(1)写出点A,P,A′的坐标(用含m,n的式子表示);
(2)若直线BB'交y轴于E点,求证:线段B′E与AA′互相平分;
(3)若点A′在抛物线上且Rt△ABC的面积为1时,请求出抛物线的解析式并判断在抛物线的对称轴上是否存在点D,使△AA′D为等腰三角形?若存在,请直接写出所有符合条件的D点坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

同步练习册答案