【题目】如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.
(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;
(3)连结CE,写出AE, BE, CE之间的数量关系,并证明你的结论.
【答案】(1)见解析;(2)60°;(3)CE +AE=BE,理由见解析
【解析】试题分析:(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC=AD,∠PAC=∠PAD=20°,根据等边三角形的性质可得AC=AB,∠BAC=60°,即可得AB=AD,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D的度数,再由三角形外角的性质即可求得∠AEB的度数;(3)CE +AE=BE,如图,在BE上取点M使ME=AE,连接AM,设∠EAC=∠DAE=x,类比(2)的方法求得∠AEB=60°,从而得到△AME为等边三角形,根据等边三角形的性质和SAS即可判定△AEC≌△AMB,根据全等三角形的性质可得CE=BM,由此即可证得CE +AE=BE.
试题解析:
(1)如图:
(2)在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AC=AD,∠PAC=∠PAD,
∴AB=AD
∴∠ABD=∠D
∵∠PAC=20°
∴∠PAD=20°
∴∠BAD=∠BAC+∠PAC +∠PAD =100°
.
∴∠AEB=∠D+∠PAD=60°
(3)CE +AE=BE.
在BE上取点M使ME=AE,连接AM,
在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AC=AD,∠EAC=∠EAD,
设∠EAC=∠DAE=x.
∵AD =AC=AB,
∴
∴∠AEB=60-x+x =60°.
∴△AME为等边三角形.
∴AM=AE,∠MAE=60°,
∴∠BAC=∠MAE=60°,
即可得∠BAM=∠CAE.
在△AMB和△AEC中,
,
∴△AMB≌△AEC.
∴CE=BM.
∴CE +AE=BE.
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)著点P在图(2)位置时,请写出∠1、∠2、∠3之间的关系,并说明理由;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知13 = 1 =×12×22, 13+23=9=×22×32,13 + 23 + 33 = 36 =×32×42, …,按照这个规律完成下列问题:
(1)13+23+33+43+53=________=× ( )2 × ( )2
(2)猜想:13+23+33+…+n3=___________
(3)利用(2)中的结论计算:(写出计算过程)
113+123 + 313+143 + 153+163 + ……+393+403.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC是等边三角形.
(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判断BF与CF的数量关系,并加以证明;
(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列条件中,不能证明△ABD≌△ACD的是( )
A. BD=DC ,AB=AC B. ∠ADB=∠ADC,∠BAD=∠CAD
C. ∠B=∠C, BD=DC D. ∠B=∠C ,∠BAD=∠CAD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com