精英家教网 > 初中数学 > 题目详情

【题目】如图ABCD的边AB延长至点E使ABBE连接BDDEECDEBC于点O.

(1)求证:△ABD≌△BEC

(2)若∠BOD2A求证:四边形BECD是矩形.

【答案】见解析

【解析】试题分析:(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;

(2)欲证明四边形BECD是矩形,只需推知BC=ED.

试题解析:证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.

又∵AB=BE,

∴BE=DC,

∴四边形BECD为平行四边形,

∴BD=EC.

∴在△ABD与△BEC中,

∴△ABD≌△BEC(SSS);

(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.

∵四边形ABCD为平行四边形,

∴∠A=∠BCD,即∠A=∠OCD.

又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,

∴∠OCD=∠ODC,

∴OC=OD,

∴OC+OB=OD+OE,即BC=ED,

∴平行四边形BECD为矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】本题8分如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1

(1)BEC的形状,并说明理由;

(2)判断四边形EFPH是什么特殊四边形?并证明你的判断。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF= EH,那么EH的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE

求证:1∠CEB=∠CBE

2)四边形BCED是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S= (其中a,b,c是三角形的三边长,p= ,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9

(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为3,E是BC上一点,BE= ,Q是CD上一动点,将△CEQ沿直线EQ折叠后,点C落在点P处,连接PA,点Q从点C出发,沿线段CD向点D运动,当PA的长度最小时,CQ的长为(
A.3 ﹣3
B.3﹣
C.
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△ECD都是等边三角形,B、C、D在一条直线上。

求证:(1)BE=AD;

(2) △FCH是等边三角形

(3)求∠EMD的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形ABCD中,∠B=60°,延长BC至E,使得CE=BC,点F在DE上,DF=6,AG平分∠BAF,与线段BC相交于点G,若CG=2,则线段AB的长度为

查看答案和解析>>

同步练习册答案