精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,二次函数y=﹣x2+6x5的图象与x轴交于AB两点,与y轴交于点C,其顶点为P,连接PAACCP,过点Cy轴的垂线l

1P的坐标   C的坐标   

2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.

【答案】134),(0,﹣5);(2)存在,点Q的坐标为:(,﹣5)或(,﹣5

【解析】

1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C0-5);
2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D0),设直线PQx轴于E,当BE=2AD时,PBQ的面积等于PAC的面积的2倍,分两种情形分别求解即可解决问题.

解:(1)∵y=﹣x2+6x5=﹣(x32+4

∴顶点P34),

x0得到y=﹣5

C0,﹣5).

故答案为:(34),(0,﹣5);

2)令y0x26x+50

解得:x1或x=5

A10),B50),

设直线PC的解析式为ykx+b,则有

解得:

∴直线PC的解析式为:y3x5

设直线交x轴于D,则D0),

设直线PQx轴于E,当BE2AD时,△PBQ的面积等于△PAC的面积的2倍,

AD

BE

E0)或E′(0),

则直线PE的解析式为:y=﹣6x+22

Q,﹣5),

直线PE′的解析式为y=﹣x+

Q′(,﹣5),

综上所述,满足条件的点Q的坐标为:(,﹣5)或(,﹣5);

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点P为抛物线yx2上一动点,以P为顶点,且经过原点O的抛物线,记作“yp”,设其与x轴另一交点为A,点P的横坐标为m

1当△OPA为直角三角形时,m=    

当△OPA为等边三角形时,求此时“yp”的解析式;

2)若P点的横坐标分别为123,…n(n为正整数)时,抛物线“yp”分别记作“”、“”…,“”,设其与x轴另外一交点分别为A1A2A3,…An,过P1P2P3,…Pnx轴的垂线,垂足分别为H1H2H3,…Hn

 1) Pn的坐标为    OAn=    (用含n的代数式来表示)

PnHnOAn=16时,求n的值.

 2)是否存在这样的An,使得∠OP4An=90°,若存在,求n的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.

(1)求之间的函数关系式,并写出自变量的取值范围;

(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在RtABC中,∠C90°,按以下步骤作图:

①以点A为圆心,以小于AC的长为半径作弧,分别交ACAB于点MN

②分别以点MN为圆心,以大于MN的长为半径作弧,两弧相交于点O

③作射线OA,交BC于点E,若CE6BE10

AB的长为(  )

A.11B.12C.18D.20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,抛物线x轴交于AB两点,与y轴交于点C,已知C点坐标为(04),抛物线的顶点的横坐标为,点P是第四象限内抛物线上的动点,四边形OPAQ是平行四边形,设点P的横坐标为m

1)求抛物线的解析式;

2)求使APC的面积为整数的P点的个数;

3)当点P在抛物线上运动时,四边形OPAQ可能是正方形吗?若可能,请求出点P的坐标,若不可能,请说明理由;

4)在点Q随点P运动的过程中,当点Q恰好落在直线AC上时,则称点Q和谐点,如图(2)所示,请直接写出当Q和谐点的横坐标的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点.甲从中山路上点出发,骑车向北匀速直行;与此同时,乙从点出发,沿北京路步行向东匀速直行.设出发时,甲、乙两人与点的距离分别为.已知之间的函数关系如图②所示.

1)求甲、乙两人的速度;

2)当取何值时,甲、乙两人之间的距离最短?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,弦CDAB于点E,点FO上一点,且,连接FBFDFDAB于点N

1)若AE1CD6,求O的半径;

2)求证:△BNF为等腰三角形;

3)连接FC并延长,交BA的延长线于点P,过点DO的切线,交BA的延长线于点M.求证:ONOPOEOM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB6BC8,点E是边CD上的点,且CE4,过点ECD的垂线,并在垂线上截取EF3,连接CF.将CEF绕点C按顺时针方向旋转,记旋转角为a

1)问题发现

a时,AF BE

2)拓展探究

试判断:当0°≤a°360°时,的大小有无变化?请仅就图2的情况给出证明.

3)问题解决

CEF旋转至AEF三点共线时,直接写出线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线Ly=ax2+bx+c经过点A(-30)B(04)F(40)

   

(1)求抛物线L的解析式;

(2)在图①抛物线L上,求作点C(保留作图痕迹,不写作法),使∠BAC=FAC,并求出点C的坐标;

(3)在图①中,若点D为抛物线上一动点,过点DDHx轴于点H,交直线AC于点G,过点CCKx轴于点K,连接DC,当以点GCD为顶点的三角形与ACK相似时,求点D的坐标.

查看答案和解析>>

同步练习册答案