精英家教网 > 初中数学 > 题目详情
(2002•深圳)如图,等腰梯形ABCD中,AD∥BC,AB=DC,以HF为直径的圆与AB、BC、CD、DA相切,切点分别是E、F、G、H.其中H为AD的中点,F为BC的中点.连接HG、GF.
(1)若HG和GF的长是关于x的方程x2-6x+k=0的两个实数根,求⊙O的直径HF(用含k的代数式表示),并求出k的取值范围.
(2)如图,连接EG,DF.EG与HF交于点M,与DF交于点N,求的值.

【答案】分析:(1)根据直径所对的圆周角是直角得到直角三角形HGF,再根据勾股定理以及根与系数的关系求得HF的长,根据一元二次方程根的判别式求得k的取值范围;
(2)先利用平行线等分线段定理求得=1,再根据垂径定理可知EM=MG,从而利用合比性质求得=
解答:解:(1)∵HG和GF的长是关于x的方程x2-6x+k=0的两个实数根,
∴HG+GF=6,HG•GF=k,
又∵HF为圆O的直径,∴△FHG为直角三角形,由勾股定理得:HG2+GF2=HF2
即HF2=(HG+GF)2-2HG•GF=36-2k,
∴HF=
∵方程x2-6x+k=0的两个实数根,
∴△=36-4k>0,
∴k<9;

(2)∵H为AD的中点,F为BC的中点,
∴AH=HD,BF=FC
∵AH=AE,HD=DG
∴AE=DG,EB=GC
∴AD∥BC∥EG
==
∴MN=,GN=
==
==
=1
∵EM=MG
=
点评:主要考查了一元二次方程中根的判别式、等腰梯形的性质、平行线等分线段定理和圆中的有关性质.第(2)问的解题关键是利用平行线等分线段定理先求得CN与NM之间的等量关系,再根据垂径定理找到GN和NE之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2002•深圳)已知:如图,直线y=-x+3与x轴、y轴分别交于B、C,抛物线y=-x2+bx+c经过点B、C,点A是抛物线与x轴的另一个交点.
(1)求B、C两点的坐标和抛物线的解析式;
(2)若点P在线段BC上,且,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2002•深圳)如图,等腰梯形ABCD中,AD∥BC,AB=DC,以HF为直径的圆与AB、BC、CD、DA相切,切点分别是E、F、G、H.其中H为AD的中点,F为BC的中点.连接HG、GF.
(1)若HG和GF的长是关于x的方程x2-6x+k=0的两个实数根,求⊙O的直径HF(用含k的代数式表示),并求出k的取值范围.
(2)如图,连接EG,DF.EG与HF交于点M,与DF交于点N,求的值.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《四边形》(06)(解析版) 题型:解答题

(2002•深圳)如图,等腰梯形ABCD中,AD∥BC,AB=DC,以HF为直径的圆与AB、BC、CD、DA相切,切点分别是E、F、G、H.其中H为AD的中点,F为BC的中点.连接HG、GF.
(1)若HG和GF的长是关于x的方程x2-6x+k=0的两个实数根,求⊙O的直径HF(用含k的代数式表示),并求出k的取值范围.
(2)如图,连接EG,DF.EG与HF交于点M,与DF交于点N,求的值.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一元二次方程》(07)(解析版) 题型:解答题

(2002•深圳)如图,等腰梯形ABCD中,AD∥BC,AB=DC,以HF为直径的圆与AB、BC、CD、DA相切,切点分别是E、F、G、H.其中H为AD的中点,F为BC的中点.连接HG、GF.
(1)若HG和GF的长是关于x的方程x2-6x+k=0的两个实数根,求⊙O的直径HF(用含k的代数式表示),并求出k的取值范围.
(2)如图,连接EG,DF.EG与HF交于点M,与DF交于点N,求的值.

查看答案和解析>>

同步练习册答案