精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),过点C作x轴的平行线与抛物线交于点D,抛物线的顶点为M,直线y=x+5经过D、M两点.
(1)求此抛物线的解析式;
(2)连接AM、AC、BC,试比较∠MAB和∠ACB的大小,并说明你的理由.
分析:(1)由于CD∥x轴,将C点纵坐标代入直线DM的解析式中,即可得到D点的坐标,进而可得到抛物线的对称轴方程,再根据直线DM的解析式,即可求得抛物线的顶点坐标,进而可利用待定系数法求得该抛物线的解析式.
(2)根据抛物线的解析式,可求得A、B两点坐标,即可得到OA=OC=3,故△OAC是等腰直角三角形,若过B作BP⊥AC于P,则△ABP也是等腰直角三角形,即可得到AP、BP的长,进而可求得CP的值,从而在Rt△BCP中求得∠BPC的正切值;同理,可过M作x轴的垂线,根据M点的坐标,即可得到∠MAB的正切值,然后比较这两个角的正切值即可得到两个角的大小关系.
解答:解:(1)∵CD∥x轴且点C(0,3),
∴设点D的坐标为(x,3),
∵直线y=x+5经过D点,
∴3=x+5,
∴x=-2,
即点D(-2,3),
根据抛物线的对称性,设顶点的坐标为M(-1,y),
又∵直线y=x+5经过M点,
∴y=-1+5,y=4、即M(-1,4),
∴设抛物线的解析式为y=a(x+1)2+4,
∵点C(0,3)在抛物线上,
∴a=-1,
即抛物线的解析式为y=-x2-2x+3.(3分)
精英家教网

(2)作BP⊥AC于点P,MN⊥AB于点N;
由(1)中抛物线y=-x2-2x+3可得:
点A(-3,0),B(1,0),
∴AB=4,AO=CO=3,AC=3
2

∴∠PAB=45°;
∵∠ABP=45°,
∴PA=PB=2
2

∴PC=AC-PA=
2

在Rt△BPC中,tan∠BCP=
PB
PC
=2,
在Rt△ANM中,∵M(-1,4),
∴MN=4
、∴AN=2,
tan∠NAM=
MN
AN
=2,
∴∠BCP=∠NAM,
即∠ACB=∠MAB.(8分)
点评:此题主要考查了二次函数解析式的确定以及解直角三角形的应用,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案