精英家教网 > 初中数学 > 题目详情
如图所示,多边形ABCDEF是正六边形,六个顶点中纵坐标相同的点有
3
3
对;关于x轴对称的点有
2
2
对,到原点距离相等的点有
6
6
个.
分析:根据正六边形的性质以及关于x轴对称和点的坐标性质分别得出即可.
解答:解:根据图形中点的坐标特点得出:六个顶点中纵坐标相同的点有:E和F,B和C,A和D一共有3对;
关于x轴对称的点有E和C,F和B,一共有2对,
到原点距离相等的点有A,B,C,D,E,F都到原点距离相等,故一共有6个.
故答案为:3,2,6.
点评:此题主要考查了坐标与图形的性质,根据坐标系中点的坐标性质得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从如图所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=
52
时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知:如图所示,△ABC中,E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥AB,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是
AE=AF
,试证明:这个多边形是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江西模拟)在等腰三角形ABC中,AB=AC,∠B=30°,若将若干个这样的三角形按如图所示的方式拼接在一起,使每个等腰三角形的顶角的顶点与前一个三角形的底角顶点重合,一腰在前一个等腰三角形的底边上,直至最后一个三角形的底角顶点与点A重合,则这样拼成的多边形的形状为
正十二边形
正十二边形

查看答案和解析>>

科目:初中数学 来源:2009-2010学年福建省莆田市仙游县第二教研片区九年级(上)期末联考数学试卷(解析版) 题型:解答题

如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从如图所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年河南省平顶山市中考数学二模试卷(解析版) 题型:解答题

如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从如图所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案