精英家教网 > 初中数学 > 题目详情
(2012•青岛模拟)同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=
1
2
a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n
分析:(2)设正五边形的边长是a,面积为S,得到S=
1
2
a(h1+h2+h3+h4+h5),O为正五边形的中心,连接OA、OB、OC、OD、OE,它们将五边形分成五个全等的等腰三角形,过点O作OQ⊥AB,垂足为Q,Rt△AOQ中表示出OQ、AQ、AB后即可表示出h1+h2+h3+h4+h5的值.
(3)利用上题总结的规律表示出其他的正多边形即可.
解答:解:(2)设正五边形的边长是a,面积为S,显然S=
1
2
a(h1+h2+h3+h4+h5
O为正五边形的中心,连接OA、OB、OC、OD、OE,它们将五边形分成五个全等的等腰三角形,
过点O作OQ⊥AB,垂足为Q,Rt△AOQ中,易知
OQ=OAcos∠AOQ=Rcos
1
2
∠AOB=Rcos
1
2
×72°=Rcos36°,
AQ=OAsin∠AOQ=Rsin
1
2
∠AOB=Rsin
1
2
×72°=Rsin36°,
∴AB=a=2AQ=2Rsin36°,
∴S△AOB=
1
2
AB×OQ=
1
2
×2Rsin36°•Rcos36°=R2sin36°cos36°,
∴S正五边形ABCDE=5S△AOB=5R2sin36°cos36°,
1
2
a(h1+h2+h3+h4+h5)=5R2sin36°cos36°,
即:
1
2
×2Rsin36°(h1+h2+h3+h4+h5)=5R2sin36°cos36°,
∴h1+h2+h3+h4+h5=5Rcos36°;

(3)正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=6Rcos30°,
正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=8Rcos22.5°,
正n边形(半径是R)内任意一点P到各边距离之和 h1+h2+…+hn=nRcos
180°
n
点评:本题考查了正多边形和圆的知识,解题的关键是熟知正多边形各元素与圆之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•青岛模拟)如图,在平面直角坐标系中,若△ABC绕点E旋转180°后与△A1B1C1完全重合,则点E的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青岛模拟)如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则该圆的半径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青岛模拟)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:
次数 1 2 3 4 5 6 7 8 9 10
黑棋数 1 3 0 2 3 4 2 1 1 3
根据以上数据,估算袋中的白棋子数量为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青岛模拟)如图,△ABC中,∠ACB=90°,如果将∠ABC沿BE对折,点C恰好落在AB边上的点D处,若AC=5cm,则AE+DE的值为
5
5
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青岛模拟)某同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则x满足的方程是
140
x
+
140
x+21
=14
140
x
+
140
x+21
=14

查看答案和解析>>

同步练习册答案