精英家教网 > 初中数学 > 题目详情
9.如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O为旋转中心,逆时针旋转30°得到如图2,连接OB、OD、AD.
(1)求证:△AOB≌△AOD;
(2)试判定四边形ABOD是什么四边形,并说明理由.

分析 (1)根据题意得:∠BAC=60°,∠ABC=∠EDF=90°,EF=AC,由直角三角形斜边上的中线性质得出OB=$\frac{1}{2}$AC=OA,OD=$\frac{1}{2}$EF=$\frac{1}{2}$AC=OB,由等腰三角形的性质得出OD⊥EF,证出△AOB是等边三角形,得出∠AOB=60°,由旋转的性质得:∠AOE=30°,证出∠AOD=60°,由SAS证明△AOB≌△AOD即可;
(2)由全等三角形的性质得出AB=AD=OB=OD,即可得出四边形ABOD是菱形.

解答 (1)证明:根据题意得:∠BAC=60°,∠ABC=∠EDF=90°,EF=AC,
∵O为AC的中点,
∴OB=$\frac{1}{2}$AC=OA,OD=$\frac{1}{2}$EF=$\frac{1}{2}$AC=OB,OD⊥EF,
∴△AOB是等边三角形,
∴∠AOB=60°,AB=OB=OA,
由旋转的性质得:∠AOE=30°,
∴∠AOD=90°-30°=60°,
在△AOB和△AOD中,$\left\{\begin{array}{l}{OA=OA}&{\;}\\{∠AOB=∠AOD=60°}&{\;}\\{OB=OD}&{\;}\end{array}\right.$,
∴△AOB≌△AOD(SAS);

(2)解:四边形ABOD是菱形;理由如下:
∵△AOB≌△AOD,
∴AB=AD,
∴AB=AD=OB=OD,
∴四边形ABOD是菱形.

点评 本题考查了旋转的性质、直角三角形斜边上的中线性质、等腰三角形的性质、全等三角形的判定与性质、等边三角形的判定与性质;熟练掌握直角三角形和等腰三角形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:∵m2+2mn+2n2-6n+9=0
∴m2+2mn+n2+n2-6n+9=0
∴(m+n)2+(n-3)2=0
∴m+n=0,n-3=0
∴m=-3,n=3
问题
(1)若△ABC的三边长a、b、c都是正整数,且满足a2+b2-6a-6b+18+|3-c|=0,请问△ABC是什么形状?说明理由.
(2)若x2+4y2-2xy+12y+12=0,求xy的值.
(3)已知a-b=4,ab+c2-6c+13=0,则a+b+c=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,△ABC内接于⊙P,AB是⊙P的直径,A(-1,0)C(3,2$\sqrt{2}$),BC的延长线交y轴于点D,点F是y轴上的一动点,连接FC并延长交x轴于点E.
(1)求⊙P的半径;
(2)当∠A=∠DCF时,求证:CE是⊙P的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在一副扑克牌中,拿出红桃2,红桃3,红桃4,红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).
(1)用列表法或画树状图表示出(x,y)所有可能出现的结果;
(2)求小明、小华各摸一次扑克牌,牌面数字的确定的数对(x,y)是方程x+y=6的解的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=40°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:(-1)2017+$\sqrt{9}$+($\frac{1}{2}$)-2+$\root{3}{-8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=100m,DE=20m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知抛物线y=-x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.
(1)直接写出点D的坐标和直线AD的解析式;
(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;
(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面的文字,解答问题:
大家知道$\sqrt{2}$是无理数,而无理数是无限不循环小数,因此$\sqrt{2}$的小数部分我们不可能全部地写出来,于是小明用$\sqrt{2}$-1来表示$\sqrt{2}$的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为$\sqrt{2}$的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:
∵$\sqrt{4}$<$\sqrt{7}$<$\sqrt{9}$,即2<$\sqrt{7}$<3,
∴$\sqrt{7}$的整数部分为2,小数部分为($\sqrt{7}$-2).
请解答:(1)$\sqrt{17}$的整数部分是4,小数部分是$\sqrt{17}$-4.
(2)如果$\sqrt{5}$的小数部分为a,$\sqrt{13}$的整数部分为b,求a+b-$\sqrt{5}$的值;
(3)已知:10+$\sqrt{3}$=x+y,其中x是整数,且0<y<1,求x-y的相反数.

查看答案和解析>>

同步练习册答案