精英家教网 > 初中数学 > 题目详情

已知:如图,在等腰梯形ABCD中,AD∥BC,∠BDC=∠BCD,点E是线段BD上一点,且BE=AD.
(1)证明:△ADB≌△EBC;
(2)直接写出图中所有的等腰三角形.

解(1)∵AD∥BC,
∴∠ADB=∠EBC,
∵∠BDC=∠BCD,
∴BD=BC,
在△ADB和△EBC中,

∴△ADB≌△EBC(SAS).

(2)由(1)可得△BCD是等腰三角形;
∵△ADB≌△EBC,
∴CE=AB,
又∵AB=CD,
∴CE=CD,
∴△CDE是等腰三角形.
分析:(1)根据平行线的性质判定∠ADB=∠EBC,然后由∠BDC=∠BCD,得出BD=BC,结合BE=AD,利用SAS可证明结论;
(2)根据(1)的结论,可得CE=AB,结合等腰梯形的性质,可写出等腰三角形.
点评:本题考查了等腰三角形的性质及判定,等腰梯形的性质,解答本题的关键是掌握全等三角形的判定定理及等腰梯形的性质,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源:2011年河南省周口市初一下学期相交线与平行线专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

科目:初中数学 来源:2011年河南省周口市初一下学期平移专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

同步练习册答案