精英家教网 > 初中数学 > 题目详情
12.一次函数y=4x+1,当x>0时,y的取值范围为(  )
A.y>0B.y<0C.y>1D.0<y<1

分析 得出4x+1的取值范围,即可判断y的取值范围.

解答 解:∵x>0,
∴4x>0,
∴4x+1>1,
即y>1.
故选C.

点评 本题考查了正比例函数的性质,注意求解4x+1的范围是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,二次函数y=x2+mx+2m-7的图象经过点(1,0).
(1)求抛物线的表达式;
(2)把-4<x<1时的函数图象记为H,求此时函数y的取值范围;
(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.有四张不透明的卡片,正面写有不同命题(见图),背面完全相同.将这四张卡片背面朝上洗匀后,随机抽取一张,得到正面上命题是真命题的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.
(1)求证:四边形ABCD是菱形;
(2)若AB=5,AC=6,求AE,BF之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:|-3|+20-$\sqrt{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,平行四边形ABCD中,D点在抛物线y=$\frac{1}{8}$x2+bx+c上,且OB=OC,AB=5,tan∠ACB=$\frac{3}{4}$,M是抛物线与y轴的交点.
(1)求直线AC和抛物线的解析式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动.问:当P运动到何处时,△APQ是直角三角形?
(3)在(2)中当P运动到某处时,四边形PDCQ的面积最小,求此时△CMQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在平面直角坐标系中,抛物线y=x2-4x+3的顶点为C,与x轴交于A、B两点.
(1)求点A、C的坐标;
(2)求抛物线y=x2-4x+3关于y轴对称的抛物线的表达式;
(3)设(2)中所求抛物线上的点A1与点A对应,顶点C1与点C对应,在抛物线y=x2-4x+3上是否存在一点P,使△PA1C1的面积最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,AB是⊙O的直径,D是$\widehat{AC}$的中点,弦AC与弦BD交于点E,点F在BD的延长线上,且DF=DE.
(1)求证:AF是⊙O的切线;
(2)若AD=5,AC=8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:一次函数y=x-2与反比例函数y=$\frac{{m}^{2}}{x}$(m≠0).
(1)求证:这两个函数的图象一定有两个不同的交点;
(2)若他们的一个交点是(1,m),求反比例函数的解析式.

查看答案和解析>>

同步练习册答案