精英家教网 > 初中数学 > 题目详情
(2008•来宾)如图,AB是半圆O的直径,C是半圆上一个动点,AD、BD分别平分∠BAC和∠ABC,延长AD分别与BC、半圆O交于点F、E,连接BE、CE.
(1)证明:△ABE∽△BFE;
(2)证明:△BDE是等腰直角三角形;
(3)如果四边形ABEC是梯形,试求∠ABC的大小.

【答案】分析:(1)需证明∠CBE=∠BAE,根据同弧所对的圆周角相等和角平分线的定义可证得;
(2)AB是半圆O的直径,那么∠DEB=90°,再证明∠EDB=∠EBD即可,可根据∠EDB=∠BAE+∠ABD,∠EBD=∠CBE+∠FB和(1)的结论证明;
(3)由于四边形ABEC是梯形,就有CE∥AB,可得∠CEA=∠BAE,可得∠CAE=∠BAE=∠ABC,又∠ACB=90°,∠ABC+∠CAE+∠BAE=90°(即3∠ABC=90°,∴∠ABC=30°).
解答:(1)证明:∵AD平分∠BAC,
∴∠CAE=∠BAE.(1分)
又∵∠CAE=∠CBE(同弧所对的圆周角相等),
∴∠CBE=∠BAE.(2分)
又∵∠AEB=∠BEF,
∴△ABE∽△BFE.

(2)证明:∵AB是半圆O的直径,
∴∠DEB=90°.(4分)
又∵AD平分∠BAC,BD平分∠ABC,
∴∠CAE=∠BAE,∠ABD=∠FBD.
又∵∠EDB=∠BAE+∠ABD,
∠EBD=∠CBE+∠FBD
∠CAE=∠CBE(同弧所对的圆周角相等),
∴∠EDB=∠EBD.(5分)
∴△BDE是等腰直角三角形.

(3)解:∵四边形ABEC是梯形,
∴CE∥AB.
∴∠CEA=∠BAE.
又∵AD平分∠BAC,
∴∠CAE=∠BAE.
又∵∠CEA=∠ABC(同弧所对的圆周角相等),
∴∠CAE=∠BAE=∠ABC.
又∵∠ACB=90°,
∴∠ABC+∠CAE+∠BAE=90°(即3∠ABC=90°).
∴∠ABC=30°.
点评:此题综合考查了相似三角形的判定、角平分线的定义、圆周角定理等知识点.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《锐角三角函数》(07)(解析版) 题型:解答题

(2008•来宾)如图,一斜坡的倾斜角为30°,坡上有一棵树AB,当太阳光线与水平线成70°沿斜坡照下时,在斜坡上的树影BC长为4米,求树高AB.(精确到0.1米)
(参考数据:sin70°≈0.9397,cos70°≈0.3420,tan70°≈2.7475,≈1.7321)

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2008•来宾)如图,AB是半圆O的直径,C是半圆上一个动点,AD、BD分别平分∠BAC和∠ABC,延长AD分别与BC、半圆O交于点F、E,连接BE、CE.
(1)证明:△ABE∽△BFE;
(2)证明:△BDE是等腰直角三角形;
(3)如果四边形ABEC是梯形,试求∠ABC的大小.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《图形的旋转》(04)(解析版) 题型:解答题

(2008•来宾)如图,已知△ABC关于直线MN的对称图形是△A1B1C1,将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2.请在图中分别画出△A1B1C1和△A1B2C2,并正确标出对应顶点的字母.(不要求写出画法)

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《图形的对称》(05)(解析版) 题型:解答题

(2008•来宾)如图,已知△ABC关于直线MN的对称图形是△A1B1C1,将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2.请在图中分别画出△A1B1C1和△A1B2C2,并正确标出对应顶点的字母.(不要求写出画法)

查看答案和解析>>

同步练习册答案