精英家教网 > 初中数学 > 题目详情
(2002•广州)过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较大的角的度数是   
【答案】分析:根据直角三角形两锐角互余可以得到到,∠A、∠B中有一个是70°,另一个是50°,因而∠A、∠B中较大的角的度数是70°.
解答:解:如图,依题意得∠ACD=40°,∠DCB=20°,
而CD⊥AB于D,
∴∠A=50°,∠B=70°,
因而∠A、∠B中较大的角的度数是70°.
故填空答案:70°.
点评:本题主要考查的是直角三角形两锐角互余的性质,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2002•广州)如图,在△ABC中,∠B=90°,AB=4,BC=3,O是AB的中点,OP⊥AB交AC于点P.
(1)证明线段AO、OB、OP中,任意两条线段长度之和大于第三条线段的长度;
(2)过线段OB(包括端点)上任一点M,作MN⊥AB交AC于点N.如果要使线段AM、MB、MN中任意两条线段长度之和大于第三条线段的长度,那么请求出线段AM的长度的取值范围.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《三角形》(07)(解析版) 题型:解答题

(2002•广州)如图,在△ABC中,∠B=90°,AB=4,BC=3,O是AB的中点,OP⊥AB交AC于点P.
(1)证明线段AO、OB、OP中,任意两条线段长度之和大于第三条线段的长度;
(2)过线段OB(包括端点)上任一点M,作MN⊥AB交AC于点N.如果要使线段AM、MB、MN中任意两条线段长度之和大于第三条线段的长度,那么请求出线段AM的长度的取值范围.

查看答案和解析>>

科目:初中数学 来源:2002年广东省广州市中考数学试卷(解析版) 题型:解答题

(2002•广州)如图,在△ABC中,∠B=90°,AB=4,BC=3,O是AB的中点,OP⊥AB交AC于点P.
(1)证明线段AO、OB、OP中,任意两条线段长度之和大于第三条线段的长度;
(2)过线段OB(包括端点)上任一点M,作MN⊥AB交AC于点N.如果要使线段AM、MB、MN中任意两条线段长度之和大于第三条线段的长度,那么请求出线段AM的长度的取值范围.

查看答案和解析>>

科目:初中数学 来源:2002年广东省广州市中考数学试卷(解析版) 题型:填空题

(2002•广州)过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较大的角的度数是   

查看答案和解析>>

同步练习册答案