精英家教网 > 初中数学 > 题目详情
如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且
AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形,
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF。
∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,
∴△ABC≌DEF(SAS)。∴BC=EF,∠ACB=∠DFE,∴BC∥EF。
∴四边形BCEF是平行四边形.
(2)解:连接BE,交CF与点G,

∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形。
∵∠ABC=90°,AB=4,BC=3,
∴AC=
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC。
,即。∴
∵FG=CG,∴FC=2CG=
∴AF=AC﹣FC=5﹣
∴当AF=时,四边形BCEF是菱形.
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形。
(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一块直角三角板的直角顶点P放在正方形ABCD的BC边上,并且使一条直角边经过点D,另一条直角边与AB交于点Q.

(1)请你写出一对相似三角形,并加以证明;
(2)当点P满足什么条件时, ,请证明你的结论;

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,顶点的坐标为,若以原点O为位似中心,画的位似图形,使的相似比等于,则点的坐标为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=   ;直线BC与直线B′C′所夹的锐角为   度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠BAC=90°,正方形的一边GF在BC上,其余两个顶点D,E分别在AB,AC上.连接AG,AF分别交DE于M,N两点.
(1)求证:.
(2)求证:
(3)若AB=AC=2,求MN的长.
    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AB=AC=5,BC=6,点E、F分别在AB、BC边上,将△BEF沿直线EF翻折后,点B落在对边AC的点为B',若△B'FC与△ABC相似,那么BF=          .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在中,D是AC上一点,联结BD,且∠ABD =∠ACB.

小题1:求证:△ABD∽△ACB;
小题2:若AD=5,AB= 7,求AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:相交于点,若,则_______________。

查看答案和解析>>

同步练习册答案