精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD中,AB∥CD,AD=DC=BD=3,BC=4,则AC=
2
5
2
5
分析:延长AD到E,使DE=AD,连接CE.则△AEC为直角三角形,再证△BDC≌△EDC(SAS),最后用勾股定理即可.
解答:解:如图,延长AD到E,使DE=AD,连接CE.
∵AD=CD,
∴CD=
1
2
AE,
∴∠ACE=90°.
∵AB∥CD,
∴∠1=∠2,∠3=∠DAB.
又∵AD=BD,
∴∠1=∠DAB,
∴∠2=∠3.
∴在△BDC与△EDC中,
BD=ED
∠2=∠3
CD=CD

∴△BDC≌△EDC(SAS),
∴BC=CE=4.
在Rt△ACE中,EC=4,AE=2AD=6,则根据勾股定理知AC=
AE2-CE2
=
36-16
=2
5

故答案是:2
5
点评:本题考查了勾股定理.解答该题时,利用到了直角三角形的判定定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案