精英家教网 > 初中数学 > 题目详情
(2013•杭州一模)点A,B的坐标分别为(-2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<-3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为-5;④当四边形ACDB为平行四边形时,a=-
4
3
.其中正确的是(  )
分析:根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.
解答:解:∵点A,B的坐标分别为(-2,3)和(1,3),
∴线段AB与y轴的交点坐标为(0,3),
又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),
∴c≤3,(顶点在y轴上时取“=”),故①错误;
∵抛物线的顶点在线段AB上运动,
∴当x<-2时,y随x的增大而增大,
因此,当x<-3时,y随x的增大而增大,故②正确;
若点D的横坐标最大值为5,则此时对称轴为直线x=1,
根据二次函数的对称性,点C的横坐标最小值为-2-4=-6,故③错误;
根据顶点坐标公式,
4ac-b2
4a
=3,
令y=0,则ax2+bx+c=0,
CD2=(-
b
a
2-4×
c
a
=
b2-4ac
a2

根据顶点坐标公式,
4ac-b2
4a
=3,
b2-4ac
a
=-12,
∴CD2=
1
a
×(-12)=
12
-a

∵四边形ACDB为平行四边形,
∴CD=AB=1-(-2)=3,
12
-a
=32=9,
解得a=-
4
3
,故④正确;
综上所述,正确的结论有②④.
故选A.
点评:本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,①要注意顶点在y轴上的情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•杭州一模)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=DC,点E在对角线BD上,作∠ECF=90°,连接DF,且满足CF=EC.
(1)求证:BD⊥DF.
(2)当BC2=DE•DB时,试判断四边形DECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则sinC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE-ED-DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图;
(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:
①当0<t≤5时,y=
4
5
t2;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=
1
2
;④当t=
29
2
秒时,△ABE∽△QBP;
其中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):

根据统计图表中的信息,解答下列问题:
(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有
10
10
人,男生最喜欢“乒乓球”项目的有
20
20
人;
(2)请将条形统计图补充完整;
(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是
4
4

查看答案和解析>>

同步练习册答案