精英家教网 > 初中数学 > 题目详情
20.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是(  )
A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF

分析 根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.

解答 解:∵∠B=∠DEF,AB=DE,
∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;
∴添加BC=EF,利用SAS可得△ABC≌△DEF;
∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;
故选D.

点评 本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.
(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;
(2)求y1、y2与x的函数表达式;
(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,一次函数y1=x+1的图象与反比例函数y2=$\frac{k}{x}$(x>0)的图象交于点M,作MN⊥x轴,N为垂足,且ON=1
(1)在第一象限内,当x取何值时,y1>y2?(根据图象直接写出结果)
(2)求反比例函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.二次函数y=x2+2x-3的开口方向、顶点坐标分别是(  )
A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)
C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,-4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知AD=BC,AC=BD.
(1)求证:△ADB≌△BCA;
(2)OA与OB相等吗?若相等,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.计算:$\frac{5{c}^{2}}{6ab}•\frac{3b}{{a}^{2}c}$=$\frac{5c}{2{a}^{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列等式错误的是(  )
A.(2mn)2=4m2n2B.(-2mn)2=4m2n2C.(2m2n23=8m6n6D.(-2m2n23=-8m5n5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.计算:$\sqrt{3}$($\sqrt{3}$+$\sqrt{27}$)=12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,在平面直角坐标系xOy中,点B(-2,2),过反比例函数y=$\frac{k}{x}$(x<0,常数k<0)图象上一点A(-$\frac{1}{2}$,m)作y轴的平行线交直线l:y=x+2于点C,且AC=AB.

(1)分别求出m、k的值,并写出这个反比例函数解析式;
(2)发现:过函数y=$\frac{k}{x}$(x<0)图象上任意一点P,作y轴的平行线交直线l于点D,请直接写出你发现的PB,PD的数量关系PB=PD;
应用:①如图2,连接BD,当△PBD是等边三角形时,求此时点P的坐标;
②如图3,分别过点P、D作y的垂线交y轴于点E、F,问是否存在点P,使得矩形PEFD的周长取得最小值?若存在,请求出此时点P的坐标及矩形PEFD的周长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案