精英家教网 > 初中数学 > 题目详情

如图,以△ABC的边BC为直径作⊙O分别交AB,AC于点F.点E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
求证:DM2=DH•DA.

证明:连接BM,CM,
∵BC为⊙O直径,
∴∠BMC=∠BEC=90°,
∵MD⊥BC,
∴∠C+∠CMD=90°,
∵∠CMD+∠BMD=90°,
∴∠MCD=∠BMD,
∠MDC=∠MDB=90°,
∴△BDM∽△MDC,
=
∴MD2=BD•CD,
∵∠AHE=∠BHD,∠AEH=∠HDB=90°,
∴∠DBH=∠DAC,
∠BDH=∠ADC=90°,
∴△BDH∽ADC,
=
∴BD•CD=AD•DH,
∴DM2=DH•DA.
分析:首先利用相似三角形的判定得出△BDM∽△MDC,即可得出MD2=BD•CD,进而得出△BDH∽ADC,以及BD•CD=AD•DH,即可得出答案.
点评:此题主要考查了相似三角形的判定与性质以及圆周角定理等知识,根据已知得出△BDM∽△MDC,△BDH∽ADC进而得出比例式是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.
(1)当∠BAC满足什么条件时,四边形ADFE是矩形;
(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;
(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以△ABC的边AB为直径作⊙O,交BC于D点,交AC于E点,BD=DE
(1)求证:△ABC是等腰三角形;
(2)若E是AC的中点,求
BD
的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)如图,以△ABC的边AB为直径作⊙O,BC与⊙O交于D,D是BC的中点,过D作DE⊥AC,交AC于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,BD=8,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•黔东南州)如图,以△ABC的边BC为直径作⊙O分别交AB,AC于点F.点E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
求证:DM2=DH•DA.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的边AB为直径的⊙O交AC于点D,弦DE∥AB,∠C=∠BAF
(1)求证:BC为⊙O的切线;
(2)若⊙O的半径为5,AD=2
5
,求DE的长.

查看答案和解析>>

同步练习册答案