(本题满分13分)如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
![]()
⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______;
⑵若△EFG与梯形ABCD重叠部分面积是y,求
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.
(1)x,D点
(2)①当0<x≤2时,△EFG在梯形ABCD内部,所以y=
x2
②分两种情况:Ⅰ.当2<x<3时,此时 y=
x2-
(3x-6)2=![]()
Ⅱ.当3≤x≤6时,y=
(6-x)2=![]()
(3)当x=
时,ymax=![]()
【解析】(满分13分)
解:⑴;………………3分
⑵ ①当0<x≤2时,△EFG在梯形ABCD内部,所以y=
x2;………………6分
②分两种情况:
Ⅰ.当2<x<3时,如图1,点E、点F在线段BC上,
![]()
△EFG与梯形ABCD重叠部分为四边形EFNM,
∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6.
由于在Rt△NMG中,∠G=60°,
所以,此时 y=
x2-
(3x-6)2=
.………………9分
Ⅱ.当3≤x≤6时,如图2,
![]()
点E在线段BC上,点F在射线CH上,
△EFG与梯形ABCD重叠部分为△ECP,
∵EC=6-x,
∴y=
(6-x)2=
.………………11分
⑶当0<x≤2时,∵y=
x2在x>0时,y随x增大而增大,
∴x=2时,y最大=
;
当2<x<3时,∵y=
在x=
时,y最大=
;
当3≤x≤6时,∵y=
在x<6时,y随x增大而减小,
∴x=3时,y最大=
.………………12分
综上所述:当x=
时,y最大=
.………………13分
科目:初中数学 来源: 题型:
(本题满分13分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
![]()
⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
⑶ 当AM+BM+CM的最小值为
时,求正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2010年高级中等学校招生考试数学卷(广东珠海) 题型:解答题
(本题满分13分)如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).![]()
⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______;
⑵若△EFG与梯形ABCD重叠部分面积是y,求
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.
查看答案和解析>>
科目:初中数学 来源:2010年高级中等学校招生考试数学卷(广东珠海) 题型:解答题
(本题满分13分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
![]()
⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
⑶ 当AM+BM+CM的最小值为
时,求正方形的边长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com