精英家教网 > 初中数学 > 题目详情

如图,一个圆与平面直角坐标系中的x轴切于点,与y轴交于B(0,4),C(0,16)两点,则该圆的直径为___     _。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C
 
;D(
 
);
②⊙D的半径=
 
(结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为
 
;(结果保留π)
④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

数学家们通过长期的研究,得到了关于“等周问题”的重要结论:在周长相同的所有封闭平面曲线中,以圆所围成的面积最大.
“等周问题”虽然较为繁杂,但其根本思想基于下面2个事实:
事实1:等周长n边形的面积,当图形为正n边形时,其面积最大;
事实2:等周长n边形的面积,当边数n越大时,其面积也越大.
为了理解这些事实的合理性,曙光数学小组走出校门展开了下列课题研究.请你帮助他们解决其中的一些问题.
现有长度为100m的篱笆(可弯曲围成一个区域).
(1)如果用篱笆围成一个长方形鸡场,怎样围才能使鸡场的面积最大?为什么?
(2)如果用篱笆围成一个正五边形鸡场,那么与(1)中的正方形鸡场比较,哪个面积更大?请在事实1的基础上证明事实2:“等周长n边形的面积,当边数n越大时,其面积也越大.”
(3)利用事实1和事实2,请对“等周问题”的重要结论作出较为合理的解释.
(4)爱动脑筋的小明提出一个问题:如果借用一条充分长的直墙,将篱笆围成一个四边形鸡场,为了使鸡场的面积尽量大,所围成的长方形鸡场的长是宽的2倍(如图).你觉得他讲的是否有道理?你有没有更好的方法,使围成的四边形鸡场的面积更大?如果有,请说明你的方法.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.
(2)请在(1)的基础上,完成下列问题:
①写出点的坐标:C
 
、D
 

②⊙D的半径=
 
(结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为
 
(结果保留π);
④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•池州一模)我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图1).
探索下列问题:
(1)在如图2给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2
①请你在如图3中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接);
②请你在如图4中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).
(3)是否存在一条直线,将一个任意的平面图形(如图5)分割成面积相等的两部分?请简略说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.
【小题1】请完成如下操作:
①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.
【小题2】请在(1)的基础上,完成下列问题:
①写出点的坐标:C _________(6,2)
、D ________;(2,0)
②⊙D的半径为________ 2 5
(结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的侧面面积为 ____________5π4
(结果保留π);
④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.

查看答案和解析>>

同步练习册答案