精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.精英家教网
(1)试判断BF与⊙O的位置关系,并说明理由;
(2)若BF=5,cos∠C=
45
,求⊙O的直径.
分析:(1)连接OB、OA或连接BD,由AB=AC,则∠ABC=∠C,由AF=AE,则∠EBA=∠FBA,从而得出∠ABD+∠FBA=90°,即OB⊥BF,
则BF是⊙O切线;
(2)由(1)得∠C=∠D,再由cos∠C=
4
5
,得
BF
DF
=
3
5
,则
BF
BD
=
3
4
,从而求出BD.
解答:精英家教网证明:(1)BF与⊙O相切,连接OB、OA,连接BD(1分),
∵AD⊥AB,∴∠BAD=90°,
∴BD是直径,∴BD过圆心
∵AB=AC,
∴∠ABC=∠C,
∵∠C=∠D,
∴∠ABC=∠D,
∵AD⊥AB,
∴∠ABD+∠D=90°,
∵AF=AE,
∴∠EBA=∠FBA,
∴∠ABD+∠FBA=90°,
∴OB⊥BF,
∴BF是⊙O切线(4分);

(2)∵∠C=∠D,cos∠C=
4
5

∴cos∠D=
4
5

∵BF=5,
BD
DF
=
4
5

BF
DF
=
3
5

∴BD=
4
3
×5=
20
3

∴直径为
20
3
(8分).
点评:本题考查了切线的判定和解直角三角形,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案