分析 (1)通过垂直的定义、直角三角形中的两个锐角互余以及等量代换,可以证得△PBM与△QNM中的两个角对应相等,所以这两个三角形一定相似;
(2)PQ2=BP2+CQ2.作辅助线延长QM至点D,使MD=MQ.连接PD、BD构建平行四边形BDCQ.根据平行四边形的对边平行且相等推知BD∥CQ,BD=CQ;然后在直角三角形BPD中利用勾股定理求得PD2=BP2+BD2=BP2+CQ2;最后利用线段垂直平分线的性质知PQ=PD,所以由等量代换证得该结论.
解答 解:(1)△PBM∽△QNM.理由如下:
如图1,∵MQ⊥MP,MN⊥BC(已知),
∴∠PMB+∠PMN=90°,∠QMN+∠PMN=90°,
∴∠PMB=∠QMN(等量代换).
∵∠PBM+∠C=90°(直角三角形的两个锐角互余),∠QNM+∠C=90°(直角三角形的两个锐角互余),
∴∠PBM=∠QNM(等量代换).
∴△PBM∽△QNM;
(2)PQ2=BP2+CQ2.
证明如下:如图1,延长QM至点D,使MD=MQ.连接PD、BD,BQ,CD
∵BC、DQ互相平分,
∴四边形BDCQ为平行四边形,
∴BD∥CQ,BD=CQ(平行四边形的对边平行且相等);
又∵∠BAC=90°,
∴∠PBD=90°,
∴PD2=BP2+BD2=BP2+CQ2,
∵PM垂直平分DQ,
∴PQ=PD,
∴PQ2=BP2+CQ2.
点评 本题考查了相似三角形的判定与性质,以及勾股定理的综合应用,解题的关键是熟练掌握垂直的定义、直角三角形中的两个锐角互余,相似三角形的判定与性质,平行四边形的性质,勾股定理,线段垂直平分线的性质等知识点,综合性较强,难度较大.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com