如图,在四边形ABCD中,AB=BC,对角线BD平分ÐABC,P是BD上一点,过点P作PM^AD,PN^CD,垂足分别为M、N。
![]()
(1)求证:ÐADB=ÐCDB;
(2)若ÐADC=90°,求证:四边形MPND是正方形。
见解析
【解析】证明:(1)∵BD平分ÐABC,∴ÐABD=ÐCBD。
又∵BA=BC,BD=BD,∴△ABD ≌△CBD(SAS)。
∴ÐADB=ÐCDB。
(2)∵PM^AD,PN^CD,∴ÐPMD=ÐPND=90°。
又∵ÐADC=90°,∴四边形MPND是矩形。
∵ÐADB=ÐCDB,PM^AD,PN^CD,∴PM=PN。∴四边形MPND是正方形。
(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB。
(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com