精英家教网 > 初中数学 > 题目详情

【题目】解答题
(1)解不等式组 并把它的解集在数轴上表示出来.
(2)解方程 =1﹣

【答案】
(1)解:

解不等式①,得x≤1,

解不等式②,得x>﹣1,

则不等式组的解集是﹣1<x≤1;


(2)解:方程两边同乘x﹣3得:3x=(x﹣3)+1,

解得:x=﹣1,

检验:当x=﹣1时,x﹣3≠0,

所以x=﹣1是原方程的解


【解析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【考点精析】根据题目的已知条件,利用去分母法和不等式的解集在数轴上的表示的相关知识可以得到问题的答案,需要掌握先约后乘公分母,整式方程转化出.特殊情况可换元,去掉分母是出路.求得解后要验根,原留增舍别含糊;不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知A(1,1),B(4,3),C(6,﹣2),在平面直角坐标找一点D,使以A、B、C、D四点的四边形为平行四边形,则D点的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.

(1)求点Q运动的速度;
(2)求图2中线段FG的函数关系式;
(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

(1)3(20-y)=6y-4(y-11);

(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段MN=8,C是线段MN上一动点,在MN的同侧分别作等边△CMD和等边△CNE.
(1)如图①,连接DN与EM,两条线段相交于点H,求证ME=DN,并求∠DHM的度数;

(2)如图②,过点D、E分别作线段MN的垂线,垂足分别为F、G,问:在点C运动过程中,DF+EG的长度是否为定值,如果是,请求出这个定值,如果不是请说明理由;

(3)当点C由点M移到点N时,点H移到的路径长度为(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长都为1的方格纸上有线段AB和点C.

(1)画线段BC、画射线AC.

(2)过点C画直线AB的平行线EF.

(3)过点C画直线AB的垂线,垂足为点D.

(4)求△ABC的面积是____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形,使,连接,再以为边作第三个菱形,使;…,按此规律所作的第六个菱形的边长为( )

A. 9 B. C. 27 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD绕点A逆时针旋转30°,得到□AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则C=( )

A.155° B.170° C.105° D.145°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是

查看答案和解析>>

同步练习册答案