解:(1)∵⊙O的直径AB垂直弦CD于点E,
∴CE=DE
设EB=3x,则BC=5x,
∴CE=4x,
在直角三角形OCE中,
OC
2=CE
2+OE
2,
5
2=(4x)
2+(5-3x)
2,
解得x=0或x=1.2,
∴CE=4x=4.8,
∴CD=2CE=9.6;
(2)∵AB⊥CD,
∴

∴∠COB=2∠BCD
∵∠OCD=4∠BCD,∠OBC=∠OCB,∠OCB+∠OBC+COB=180°,
∴∠BCD=15°,
∴∠OBC=75°,
∴∠BOC=30°,
∴∠AOC=150°
∴S=

=

.
分析:(1)由垂径定理可得CE=DE,在直角三角形OCE中,利用勾股定理可得CE的长,乘以2即为CD的长;
(2)算出∠COB的度数,也就求得了阴影部分的圆心角,利用扇形的面积公式计算即可.
点评:综合考查了垂径定理的应用,扇形面积的计算;利用勾股定理及求得扇形的圆心角是解决本题的突破点.