精英家教网 > 初中数学 > 题目详情
如图,直线y=x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.
(1)y=﹣x﹣     (2)F1)、F2(﹣)、F3.(﹣,2)
(3)d=﹣t+        d=t﹣

试题分析:(1)∵y=x+m交x轴负半轴于点A、交y轴正半轴于点B,
∴B(0,m)、A(﹣3,0).
∵AB=5,
∴m2+32=52
解得m=±4.
∵m>0,
∴m=4.
∴B(0,4).
∴OB=4.
∵直线AC⊥AB交y轴于点C,易得△BOA∽△AOC,
=
∴CO===
∵点C在y轴负半轴上,
∴C(0,﹣).
设直线AC解析式为y=kx+b,
∵A(﹣3,0),C(0,﹣),

解得
∴y=﹣x﹣
(2)F1)、F2(﹣)、F3.(﹣,2);
(3)分两种情况:第一种情况:当0≤t≤5时,
如图,作ED⊥FG于D,则ED=d.
由题意,FG∥AC,
=
∵AF=t,AB=5,
∴BF=5﹣t.
∵B(0,4),
∴BC=4+=
=
∴BG=(5﹣t).
∵OE=0.8t,OB=4,
∴BE=4﹣0.8t.
∴EG=(5﹣t)﹣(4﹣0.8t)=t.
∵FG⊥AB,ED⊥FG,
∴∠GDE=∠GFB=90°.
∴ED∥AB.
=
=
∴d=﹣t+
第二种情况:当t>5时,
如图(2),
作ED⊥FG于D,则ED=d,
则题意,FG∥AC,
=
∵AF=t,AB=5,
∴BF=t﹣5.
∵B(0,4),C(0,﹣),
∴BC=4+=
=
∴BG=(t﹣5).
∵OE=0.8t,OB=4,
∴BE=0.8t﹣4,EG=(t﹣5)﹣(0.8t﹣4),
=t﹣
∵FG⊥AB,ED⊥FG,∠GDE=∠GFB=90°,
∴ED∥AB.
=
=
∴d=t﹣


点评:此题考查了一次函数的综合;解题的关键是求出各点的坐标,再用各点的坐标求出解析式,注意(3)中分两种情况进行讨论,不要漏掉.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中O为坐标原点,直线与x轴、y轴分别交于A、B两点,C为OA中点;

(1)求直线BC解析式;
(2)动点P从O出发以每秒2个单位长度的速度沿线段OA向终点A运动,同时动点Q从C出发沿线段CB以每秒个单位长度的速度向终点B运动,过点Q作QM∥AB交x轴于点M,若线段PM的长为y,点P运动时间为t( ),求y于t的函数关系式;
(3)在(2)的条件下,以PC为直径作⊙N,求t为何值时直线QM与⊙N相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知一条直线与正比例函数y=-2x的图象平行,并且该直线经过点P(1,2).
(1)求这条直线的函数解析式;
(2)在下面的平面直角坐标系中,作出这条直线和正比例函数y=-2x的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=2x-2的图像不经过的象限是(   )
A.第一象限B.第二象限
C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=—x—1的图像不经过  (   )
A.第一象限B.第二象限 C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,函数y=ax-1的图象过点(1,2),则不等式ax-1>2的解集是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,线段AB的端点坐标为A(2,4),B(4,2),直线y=kx-2与线段AB平行,则k的值是                                                (      )
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象分别与坐标轴相交于A、B两点(如图所示),与反比例函数的图象相交于C点.

(1)写出A、B两点的坐标;
(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数的关系式.

查看答案和解析>>

同步练习册答案