精英家教网 > 初中数学 > 题目详情
12.(1)如图1,AC=AE,∠1=∠2,∠C=∠E.求证:BC=DE.
(2)如图2,在△ABC中,AB=AC,D为BC中点,∠BAD=30°,求∠C的度数.

分析 (1)利用“ASA”证明△ABC≌△ADE,从而得到BC=DE;
(2)利用等腰三角形的性质可判断AD平分∠BAC,则∠BAD=∠CAD=30°,于是可判定△ABC为等边三角形,然后根据等边三角形的性质可得到∠C=60°.

解答 (1)证明:∵∠1=∠2,
∴∠BAC=∠DAE,
在△ABC和△ADE中
$\left\{\begin{array}{l}{∠BAC=∠DAE}\\{AC=AE}\\{∠C=∠E}\end{array}\right.$,
∴△ABC≌△ADE,
∴BC=DE;
(2)解:∵D为BC中点,
∴BD=CD,
∵AB=AC,
∴AD平分∠BAC,
∴∠BAD=∠CAD=30°,
∴∠BAC=60°,
∴△ABC为等边三角形,
∴∠C=60°.

点评 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.计算:
①(-3)×(-9)-8×(-5);
②-63÷7+45÷(-9);
③-3×22-(-3×2)3;        
④(-0.1)3-$\frac{1}{4}$×(-$\frac{3}{5}$)2
⑤-23-3×(-2)3-(-1)4;      
⑥($\frac{1}{2}$-$\frac{5}{9}$+$\frac{5}{6}$-$\frac{7}{12}$)×(-36);
⑦[11×2-|3÷3|-(-3)2-33]÷$\frac{3}{4}$; 
⑧(-1)3-(1-$\frac{1}{2}$)÷3×[2-(-3)2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(结果保留根号);
(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知x=5,|y|=6且x>y,求2x-y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有1个点时,线段总共有3条,如果线段AB上有2个点时,线段总数有6条,如果线段AB上有3个点时,线段总数共有10条,…

(1)当线段AB上有6个点时,线段总数共有28条.
(2)当线段AB上有n个点时,线段总数共有$\frac{(n+1)(n+2)}{2}$条.
(3)如果从一个多边形的一个顶点出发,分别连接这个顶点与其余各顶点,可将这个多边形分割成2016个三角形,那么此多边形的边数为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,针对这种海产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,月销售量是450千克,月销售利润是6750元;
(2)设销售单价为每千克x元,月销售利润为y,请你求出y与x之间的函数关系式;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应该定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.多项式5xm+(k-1)x2-(2n+4)x-3是关于x的三次三项式,并且二次项系数为1,求m-k+n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下.(单位:千米)
第一次第二次第三次第四次第五次第六次第七次
-4+7-9+8+6-5-2
(1)求收工时距A地多远?方位如何?
(2)若每千米耗油0.3升,问共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.把下列多项式分解因式
(1)1-a2+2ab-b2
(2)(x-1)+m2(1-x)

查看答案和解析>>

同步练习册答案