分析 (1)求出∠C=∠GBD,BD=DC,根据ASA证出△CFD≌△BGD即可.
(2)根据全等得出GD=DF,根据线段垂直平分线性质得出即可.
(3)根据全等得出BG=CF,根据三角形三边关系定理求出即可.
解答 (1)证明:∵BG∥AC,
∴∠C=∠GBD,
∵D是BC的中点,
∴BD=DC,
在△CFD和△BGD中
$\left\{\begin{array}{l}{∠C=∠GBD}\\{CD=BD}\\{∠CDF=∠BDG}\end{array}\right.$
∴△CFD≌△BGD;
(2)证明:∵△CFD≌△BGD,
∴DG=DF,
∵DE⊥GF,
∴EG=EF;
(3)BE+CF>EF,
证明:∵△CFD≌△BGD,
∴CF=BG,
在△BGE中,BG+BE>EG,
∵由(2)知:EF=EG,
∴BG+CF>EF.
点评 本题考查了全等三角形的性质和判定,平行线的性质,线段垂直平分线性质,三角形三边关系定理的应用,主要考查学生的推理能力.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2.1m | B. | 2.2m | C. | 2.3m | D. | 2.25m |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B. | a2+a3=a5 | C. | $\frac{1}{y}$-$\frac{1}{x}$=x-y | D. | (-a3b)2=a6b2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com