精英家教网 > 初中数学 > 题目详情

在△ABC中,∠ACB=90°,CH⊥AB于H,△ACD和△BCE均为等边三角形.
(1)求证:△DAH∽△ECH;
(2)若AH:HB=1:4,求S△DAH:S△ECH

解:(1)证明:∵△ACD和△BCE均为等边三角形,
∴AC=AD,BC=CE,∠DAC=∠BCE.
在△ABC中,∠ACB=90°,CH⊥AB于H,
∴∠CAB+∠ACH=∠CAB+∠ABC=90°.
∴∠ACH=∠ABC.
同理∠CAB=∠HCB.
∴∠DAC+∠CAB=∠BCE+∠HCB,△ACH∽△CBH.
∴AH:CH=AC:BC=AD:CE,∠DAH=∠ECH.
∴△DAH∽△ECH.

(2)∵AH:HB=1:4,
∴HB=4AH.
∵△ACH∽△CBH,
∴CH2=AH•HB=4AH2
∵△DAH∽△ECH,
∴S△DAH:S△ECH.=AH2:CH2=1:4.
分析:(1)先证△ACH∽△CBH,得到,∠DAH=∠ECH从而推出△DAH∽△ECH;
(2)根据面积比等于相似比的平方进行求解.
点评:此题考查等边三角形的性质及相似三角形的判定和性质的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

17、在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC与⊙O相切于点A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

查看答案和解析>>

同步练习册答案