精英家教网 > 初中数学 > 题目详情
精英家教网如图,过点O的直线与双曲线y=
k
x
(k≠0)
交于A、B两点,过B作BC⊥x轴于C点,作BD⊥y轴于D点,在x轴、y轴上分别取点F、E,使AE=AF=OA,设图中两块阴影部分图形的面积分别是S1,S2,则S1,S2的数量关系是(  )
A、S1=S2
B、2S1=S2
C、3S1=S2
D、无法确定
分析:根据题意,易得AB两点关与原点对称,可设A点坐标为(m,n),则B的坐标为(-m,-n);在Rt△EOF中,由AE=AF=DA,可得A为EF中点,分析计算可得S2,矩形OCBD中,易得S1,比较可得答案.
解答:解:设A点坐标为(m,n),
过点O的直线与双曲线y=
k
x
(k≠0)
交于A、B两点,则AB两点关与原点对称,则B的坐标为(-m,-n);
矩形OCBD中,易得OD=-n,OC=m;则S1=-mn;
在Rt△EOF中,AE=AF=OA,故A为EF中点,
由中位线的性质可得OF=-2n,OE=2m;
则S2=OF×OE=-4mn;
故2S1=S2
故选B.
点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(-3,0)两点,与y轴交于点D(0,3).

(1)求这个抛物线的解析式;
(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为-2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(-3,0)两点,与y轴交于点D(0,3)

1.求这个抛物线的解析式

2.如图②,过点A的直线与抛物线交于点E,交轴于点F,其中点E的横坐标为-2,若直线为抛物线的对称轴,点G为直线上的一动点,则轴上是否存在一点H,使四点所围成的四边形周长最小,若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;

3.如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.

图①                                     图②

图③

 

查看答案和解析>>

科目:初中数学 来源:2012届河南省中招临考猜题(六)数学试卷(带解析) 题型:解答题

如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(-3,0)两点,与y轴交于点D(0,3)
【小题1】求这个抛物线的解析式
【小题2】如图②,过点A的直线与抛物线交于点E,交轴于点F,其中点E的横坐标为-2,若直线为抛物线的对称轴,点G为直线上的一动点,则轴上是否存在一点H,使四点所围成的四边形周长最小,若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
【小题3】如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.

图①                                     图②

图③

查看答案和解析>>

科目:初中数学 来源:2012年河南省中考数学押题试卷(三)(解析版) 题型:解答题

如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(-3,0)两点,与y轴交于点D(0,3).

(1)求这个抛物线的解析式;
(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为-2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案