精英家教网 > 初中数学 > 题目详情
已知:直线y=﹣2x+2分别与x轴、y轴相交于点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,∠BAC=90°,过C作CD⊥x轴于D.求:
(1)点A、B的坐标;
(2)AD的长;
(3)过A、B、C三点的抛物线的解析式;
(4)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.
解:(1)直线y=﹣2x+2分别与x轴、y轴相交于点A、B,
令y=0得﹣2x+2=0,解得:x=1;
令x=0,解得y=2,
∴A(1,0),B(0,2);
(2)∵∠BAC=90°,AB=AC,
∴∠BAO+∠CAD=90°,
又∠AOB=90°,
∴∠BAO+∠ABO=90°,
∴∠ABO=∠CAD,
在△ABO和△CAD中,
∵△ABO≌△CAD(AAS),
∴OB=AD=2;
(3)∵△ABO≌△CAD,
∴OA=CD=1,AD=OB=2,
∴OD=3,
∴C(3,1),
设过A、B、C三点的抛物线的解析式为y=ax2+bx+c,把三点坐标代入得:

解得

(4)存在3个点使△BCP为等腰三角形,
①当B为顶点,BC=BP时,如图所示:
在直角三角形AOB中,OA=1,OB=2,
根据勾股定理得:AB==
∴AC=AB=,又△ABC为等腰直角三角形,
∴BP=BC=,在直角三角形OBP1中,OP1==
同理OP2=
则P1(﹣,0),P2,0);
②当C为顶点,CB=CP时,P3(6,0),
此时B、C、P 在同一直线上,P3舍去;③当P为顶点,PA=PB时,P4为线段BC垂直平分线与x轴的交点,
又∵AB=AC,此时P4与A重合,
则P4(1,0),
综上,满足题意的坐标为P1(﹣,0),P2,0),P3(1,0)
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:直线y=-2x+4交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物线y=ax2+bx+c(a≠0)经过点A、B、C.
(1)求该抛物线的表达式;
(2)点D的坐标为(-3,0),点P为线段AB上的一点,当锐角∠PDO的正切值是
12
时,求点P的坐标;
(3)在(2)的条件下,该抛物线上的一点E在x轴下方,当△ADE的面积等与四边形APCE的面积时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-2x-2与x轴交于点A,与y轴交于点C,抛物线经过点A、C、E,且点E(6,7)
(1)求抛物线的解析式.
(2)在直线AE的下方的抛物线取一点M使得构成的△AME的面积最大,请求出M点的坐标及△AME的最大面积.
(3)若抛物线与x轴另一交点为B点,点P在x轴上,点D(1,-3),以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-2x+2分别与x轴、y轴相交于点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,∠BAC=90°,过C作CD⊥x轴于D.求:
(1)点A、B的坐标;
(2)AD的长;
(3)过A、B、C三点的抛物线的解析式;
(4)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,直线y=2x+3与直线y=-2x-1.
(1)求两直线交点C的坐标;
(2)求△ABC的面积;
(3)在直线BC上能否找到点P,使得S△APB=6?若能,请求出点P的坐标;若不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,直线y=-2x+4k与双曲线y=
kx
交于点A(x1,y1)、B(x2,y2),满足y1+y2=20,那么k的值是
 

查看答案和解析>>

同步练习册答案