精英家教网 > 初中数学 > 题目详情
(2005•福州)已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对称点为C′点.
(1)求C点,C′点的坐标(可用含m的代数式表示);
(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C,C′,P,Q为顶点的四边形是平行四边形,求Q点和P点的坐标(可用含m的代数式表示);
(3)在(2)的条件下,求出平行四边形的周长.

【答案】分析:(1)根据抛物线的解析式y=x2-2x-m(m>0)可求出对称轴直线,令x=0,可求出C点坐标,根据其对称轴可求出C′的坐标.
(2)画出图形,根据平行四边形的性质,令对边平行且相等或对角线互相垂直平分解答.
(3)根据勾股定理求出各边长,即可求出四边形周长.
解答:解:(1)所求对称轴为直线x=1,C(0,-m)C′(2,-m);

(2)如图所示
①当PQ∥CC′且PQ=2时,P横坐标为3,代入二次函数解析式求得P(3,3-m),
②当P′Q∥CC′且PQ=2时,P横坐标为-1,代入二次函数解析式求得P(-1,3-m),
③因为CC′⊥Q'P″,当Q′F=P″F,CF=C'F时,P″为二次函数顶点坐标,为(1,-1-m),
由于P″和Q′关于直线CC′对称,
所以Q′纵坐标为2(-m)+1+m=-m+1,
得Q′(1,1-m),
所以满足条件的P、Q坐标为P(-1,3-m),Q(1,3-m);P′(3,3-m),Q(1,3-m);P″(1,-1-m),Q′(1,1-m).

(3)①因为Q点纵坐标为3-m,C点纵坐标为-m,
所以CW=3-m+m=3,又因为WQ=1,
所以CQ==
又因为CC′=2,
所以平行四边形CC′P′Q周长为(2+)×2=4+2
同理,平行四边形CC′QP周长也为4+2
②因为CF=1,FQ=[1-m-(-1-m)]=1,C′Q==
平行四边形CC′P′Q周长为4
所求平行四边形周长为4+2
点评:本题是一道中考压轴题,考查了二次函数图象上点的坐标特征.尤其是(2)题,有一定的开放性,最好是借助图象进行解答.
练习册系列答案
相关习题

科目:初中数学 来源:2006年福建省泉州市晋江市初中学业质量检查数学试卷(解析版) 题型:解答题

(2005•福州)已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对称点为C′点.
(1)求C点,C′点的坐标(可用含m的代数式表示);
(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C,C′,P,Q为顶点的四边形是平行四边形,求Q点和P点的坐标(可用含m的代数式表示);
(3)在(2)的条件下,求出平行四边形的周长.

查看答案和解析>>

科目:初中数学 来源:2005年福建省福州市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•福州)已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对称点为C′点.
(1)求C点,C′点的坐标(可用含m的代数式表示);
(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C,C′,P,Q为顶点的四边形是平行四边形,求Q点和P点的坐标(可用含m的代数式表示);
(3)在(2)的条件下,求出平行四边形的周长.

查看答案和解析>>

科目:初中数学 来源:2005年福建省福州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•福州)已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对称点为C′点.
(1)求C点,C′点的坐标(可用含m的代数式表示);
(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C,C′,P,Q为顶点的四边形是平行四边形,求Q点和P点的坐标(可用含m的代数式表示);
(3)在(2)的条件下,求出平行四边形的周长.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《三角形》(09)(解析版) 题型:解答题

(2005•福州)已知:如图,点C、D在线段AB上,PC=PD.请你添加一个条件,使图中存在全等三角形并给予证明.所加条件为:______,你得到的一对全等三角形是△______≌△______.

查看答案和解析>>

同步练习册答案