精英家教网 > 初中数学 > 题目详情
(2011•资阳)在某校校园文化建设活动中,小彬同学为班级设计了一个班徽,这个班徽图案由一对大小相同的较大半圆挖去一对大小相同的较小半圆而得.如图,若它们的直径在同一直线上,较大半圆O1的弦AB∥O1O2,且与较小半圆O2相切,AB=4,则班徽图案的面积为(  )
分析:由题意可知班徽图案的面积=大圆的面积-小圆的面积即圆环面积.
解答:解:平移小圆使O1和O2重合,
设与较小半圆O2相切的切点为C,连接01C,O1A,

∴O1C⊥AB,
∴AC=BC=
1
2
AB=2,
∵S阴影=S-S=π(AO12-O1C12)=πAC2=4π.
故选D.
点评:本题考查了圆的面积公式和垂径定理、切线的性质定理的运用,解题的关键是把阴影部分面积转化为圆环的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•资阳)如图,在数轴上表示实数
14
的点可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•资阳)在资阳市团委发起的“暖冬行动”中,某班50名同学响应号召,纷纷捐出零花钱.若不同捐款金额的捐款人数百分比统计结果如图所示,则该班同学平均每人捐款
14
14
元.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•资阳)如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.
(1)若点F与B重合,求CE的长;
(2)若点F在线段AB上,且AF=CE,求CE的长;
(3)设CE=x,BF=y,写出y关于x的函数关系式(直接写出结果可).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•资阳)在一次机器人测试中,要求机器人从A出发到达B处.如图1,已知点A在O的正西方600cm处,B在O的正北方300cm处,且机器人在射线AO及其右侧(AO下方)区域的速度为20cm/秒,在射线AO的左侧(AO上方)区域的速度为10cm/秒.
(1)分别求机器人沿A→O→B路线和沿A→B路线到达B处所用的时间(精确到秒);
(2)若∠OCB=45°,求机器人沿A→C→B路线到达B处所用的时间(精确到秒);
(3)如图2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.试说明:从A出发到达B处,机器人沿A→P→B路线行进所用时间最短.
(参考数据:
2
≈1.414,
3
≈1.732,
5
≈2.236,
6
≈2.449)

查看答案和解析>>

同步练习册答案