分析 (1)过E作CB垂线,交延长线于点M,可证△ACP≌△PEM,得出EM=PC,AC=PM,得出BM=EM,得出∠EBM=45°,求得∠EBP;
(2)类比(1)的方法同样过E作CB垂线,垂足M,最后得出BM=EM,得出∠EBM=45°得出结论.
解答 解:(1)如图,![]()
过E作CB垂线,交延长线于点M,
∵四边形APEF是正方形,
∴∠APE=90°,AP=PE,
∵∠APC+∠PAC=∠APC+∠EPM=90°,
∴∠PAC=∠EPM,
在△ACP和△PEM中,
$\left\{\begin{array}{l}{∠PAC=∠EPM}\\{∠C=∠M}\\{AP=PE}\end{array}\right.$,
∴△ACP≌△PEM,
∴AC=MP,PC=EM,
∵AC=BC,
∴BC=MP,
∴PC=BM,
∴BM=EM,
∴∠EBM=45°,
∴∠EBP=135°.
(2)如图,![]()
作EM⊥CB,垂足为M,
∵四边形APEF是正方形,
∴∠APE=90°,AP=PE,
∵∠APC+∠PAC=∠APC+∠EPM=90°,
∴∠PAC=∠EPM,
在△ACP和△PEM中,
$\left\{\begin{array}{l}{∠PAC=∠EPM}\\{∠C=∠M}\\{AP=PE}\end{array}\right.$,
∴△ACP≌△PEM,
∴AC=MP,PC=EM,
∵AC=BC,
∴BC=MP,
∴PC=BM,
∴BM=EM,
∴∠EBM=45°.
点评 此题考查三角形全等的判定与性质,等腰直角三角形的性质,正确作出辅助线,利用三角形全等的证明方法得出三角形全等是解决问题的关键.
科目:初中数学 来源:2017届山东省中考模拟数学试卷(解析版) 题型:单选题
下列计算正确的是( )
A. a3+a2=a5 B. a3﹣a2=a C. a3•a2=a6 D. a3÷a2=a
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com