精英家教网 > 初中数学 > 题目详情

如图,直线数学公式与x轴、y 轴分别交于点A 和点B,点C在直线AB上,且点C的纵坐标为-1,点D在反比例函数数学公式的图象上,CD平行于y轴,数学公式,则k的值为


  1. A.
    数学公式
  2. B.
    5
  3. C.
    3
  4. D.
    数学公式
C
分析:将C的纵坐标代入一次函数解析式中求出横坐标的值,确定出C坐标,根据CD与y轴平行,得到CD垂直于x轴,且D的横坐标与C横坐标相同,再由已知三角形OCD的面积,根据CD与OE乘积的一半表示出面积,求出DE的长,确定出D坐标,即可确定出k的值.
解答:解:∵C的纵坐标为-1,
∴将y=-1代入y=x-2中得:-1=x-2,即x=2,
∴C(2,-1),
∵CD∥y轴,
∴DC⊥x轴,且D横坐标为2,
∵S△OCD=•CD•OE=•(DE+EC)•OE=
∴(DE+EC)•OE=5,即2(DE+1)=5,
解得:DE=
∴D(2,),
则k的值为2×=3.
故选C.
点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:三角形的面积求法,坐标与图形性质,弄清题意是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线与x轴、y轴分别交于A、B两点.
(1)将直线AB绕原点O沿逆时针方向旋转90°得到直线A1B1
请在《答题卡》所给的图中画出直线A1B1,此时直线AB与A1B1的位置关系为
 
(填“平行”或“垂直”);
(2)设(1)中的直线AB的函数表达式为y1=k1x+b1,直线A1B1的函数表达式为y2=k2x+b2,则k1•k2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线与x轴、y轴交于A、B两点,且OA=OB=1,点P是反比例函数y=
1
2x
图象在第一象限的分支上的任意一点,P点坐标为(a,b),由点P分别向x轴,y轴作垂线PM、PN,垂足分别为M、N;PM、PN分别与直线交于点E,点F.
(1)设交点E、F都在线段AB上,分别求出点E、点F的坐标;(用含a的代数式表示)
(2)△AOF与△BOE是否一定相似?如果一定相似,请予以证明;如果不一定相似或一定不相似,请简短说明理由;
(3)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,大小始终保持不变的那个角和它的大小,并证明你的结论;
(4)在双曲线y=
1
2x
上是否存在点P,使点P到直线AB的距离最短的点,若存在,请求出点P的坐标及最短距离;若不存在,说明理由
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,直线与y轴的交点是(0,-3),则当x<0时,(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线与x轴、y轴分别交于A、B两点.
(1)将直线AB绕原点O沿逆时针方向旋转90°得到直线A1B1.请在《答题卡》所给的图中画出直线A1B1,此时直线AB与A1B1的位置关系为
垂直
垂直
(填“平行”或“垂直”)
(2)设(1)中的直线AB的函数表达式为y1=k1x+b1,直线A1B1的函数表达式为y2=k2x+b2,则k1•k2=
-1
-1

查看答案和解析>>

科目:初中数学 来源:2011届宁夏银川市初三上学期期末数学卷 题型:解答题

如图①,直线与x轴、y轴分别交于B、C两点,点A在x轴负半轴上,且,抛物线经过A、B、C三点,D为线段AB中点,点P(m,n)是该抛物线上的一个动点(其中m>0,n<0),连接DP交BC于点E.

(1)写出A、B、C三点的坐标,并求抛物线的解析式;(5分)
(2) 当△BDE是等腰三角形时,直接写出此时点E的坐标;(3分)
(3)连结PC、PB,△PBC是否有最大面积?若有,求出△PBC的最大面积和此时P点的坐标;若没有,请说明理由。(3分)

查看答案和解析>>

同步练习册答案