精英家教网 > 初中数学 > 题目详情
22、已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.
分析:根据角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后根据全等三角形的对应边相等推知PM=PN.
解答:解:在△ABD和△CBD中,AB=BC(已知),
∠ABD=∠CBD(角平分线的性质),
BD=BD(公共边),
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB(全等三角形的对应角相等);
∵PM⊥AD,PN⊥CD,
∴∠PMD=∠PND=90°;
又∵PD=PD(公共边),
∴△PMD≌△PND(AAS),
∴PM=PN(全等三角形的对应边相等).
点评:本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,BD是AC边上的高,DE⊥BC于E,BE:EC=5:1.若AD=2,AB=8.
求:CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,BD是⊙O的直径,过圆上一点A作⊙O的切线交DB的延长线于P,过B点作BC∥P精英家教网A交⊙O于C,连接AB、AC.
(1)求证:AB=AC;
(2)若PA=10,PB=5,求⊙O的半径和AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知:如图,BD是△ABC的中线,延长BD至E,使得DE=BD,连接AE,CE.求证:∠BAE=∠BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,BD是△ABC的角平分线,AB=AC,
(1)若BC=AB+AD,请你猜想∠A的度数,并证明;
(2)若BC=BA+CD,求∠A的度数?
(3)若∠A=100°,求证:BC=BD+DA.

查看答案和解析>>

同步练习册答案