精英家教网 > 初中数学 > 题目详情
(2012•顺义区二模)如图,△ABC中,AB=AC=2,若P为BC的中点,则AP2+BP•PC的值为
4
4
;若BC边上有100个不同的点P1,P2,…,P100,记mi=APi2+BPi•PiC(i=1,2,…,100),则m1+m2+…+m100的值为
400
400
分析:第一个空可通过构建直角三角形利用勾股定理和等腰直角三角形的性质证明∴AB2=AP2+BP•PC即可;
第二个空可作AD⊥BC于D.根据勾股定理,得APi2=AD2+DPi2=AD2+(BD-BPi2=AD2+BD2-2BD•BPi+BPi2,PiB•PiC=PiB•(BC-PiB)=2BD•BPi-BPi2,从而求得Mi=AD2+BD2,即可求解.
解答:解:过A作AF⊥BC于F.
在Rt△ABF中,AF2=AB2-BF2
在Rt△APF中,AF2=AP2-FP2
∴AB2-BF2=AP2-FP2
即AB2=AP2+BF2-FP2=AP2+(BF+FP)(BF-FP);
∵AB=AC,AF⊥BC,
∴BF=FC;
∴BF-FP=CF-FP=PC;
∴AB2=AP2+BP•PC=4,
故答案为:4;
作AD⊥BC于D,则BC=2BD=2CD.
根据勾股定理,得
APi2=AD2+DPi2=AD2+(BD-BPi2=AD2+BD2-2BD•BPi+BPi2
又PiB•PiC=PiB•(BC-PiB)=2BD•BPi-BPi2
∴Mi=AD2+BD2=AB2=4,
∴M1+M2+…+M100=4×100=400.
故答案为:400.
点评:此题主要运用了勾股定理和等腰三角形三线合一的性质,作辅助线构造直角三角形是解本题的突破点,另外代入进行整理后代换出PC也是同学们不容易考虑到的.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•顺义区二模)如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA、OB在O点钉在一起,并使它们保持互相垂直.在测直径时,把O点靠在圆周上,读得刻度OE=4个单位,OF=3个单位,则圆的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•顺义区二模)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课外书籍情况统计表,图1是该校初中三个年级学生人数分布的扇形统计图,其中八年级学生人数为204人,请你根据图表中提供的信息,解答下列问题:
图书种类 频数 频率
科普常识 840 b
名人传记 816 0.34
中外名著 a 0.25
其他 144 0.06
(1)求该校八年级学生的人数占全校学生总人数的百分比;
(2)求表中a,b的值;
(3)求该校学生平均每人读多少本课外书?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•顺义区二模)据人民网报道,“十一五”我国铁路营业里程达9.1万公里.请把9.1万用科学记数法表示应为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•顺义区二模)把4a2b-16b分解因式,结果正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•顺义区二模)北京是严重缺水的城市,市政府号召居民节约用水,为了解居民用水情况,小敏在某小区随机抽查了10户家庭的5月份用水量,结果如下(单位:立方米):5,6,6,2,5,6,7,10,7,6,则关于这10户家庭的5月份用水量,下列说法错误的是(  )

查看答案和解析>>

同步练习册答案