精英家教网 > 初中数学 > 题目详情
已知一个多边形的最小的一个内角是120°,比它稍大的一个内角是125°以后依次每一个内角比前一个内角多5°,且所有内角的和与最大的内角的度数之比是63:8,试求这个多边形的边数.
分析:设这个多边形的边数为n,则最大内角为120°+(n-1)•5°,然后求出这个多边形的内角和,根据所有内角的和与最大的内角的度数之比是63:8,列出式子求解即可.
解答:解:设这个多边形的边数为n,则最大内角为120°+(n-1)•5°,
由题意得,[(n-2)•180°]:[120°+(n-1)•5°]=63:8,
解得:n=9,
则这个多边形的边数为9.
点评:本题考查了多边形的内角和外角,解答本题的关键是掌握多边形的内角和公式,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如果多边形的每一个外角都相等,并且小于45°,那么这个多边形的边数最小是几?
(2)已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,求此多边形的边数.
(3)多边形的内角和与某一个外角的度数的总和为1350°,求该多边形的边数.

查看答案和解析>>

同步练习册答案