精英家教网 > 初中数学 > 题目详情
精英家教网如图,E、F分别是矩形ABCD的对角线以AC、BD上两点,且AE=DF.
求证:(1)△BOE≌△COF;(2)四边形BCFE是等腰梯形.
分析:本题可以根据全等三角形的判定定理、矩形的性质来证明(1).根据梯形的判定定理一组对边相互平行,另一组对边不平行的为梯形,由等腰梯形的性质两腰相等为等腰梯形可以证明(2).
解答:证明:(1)矩形ABCD的对角线AC、BD相交于O,
∴OB=OC,OA=OD,
又∵AE=DF,
∴OE=OF,
在△BOE和△COF中,
OE=OF
∠BOE=∠COF
OB=OC

∴△BOE≌△COF(SAS);

(2)在等腰△EOF中,∠OEF=
180°-∠EOF
2

在等腰△AOD中,∠OAD=
180°-∠EOF
2

∴∠OEF=∠OAD,
又∵∠OCB=∠OAD,
∴∠OEF=∠OCB,
∴EF∥BC.
又由题意知,EF≠BC,
∴四边形BCFE是梯形.
由(1)△BOE≌△COF,
∴BE=CF,
∴四边形BCFE是等腰梯形.
点评:解决本题的关键是读懂图意,得到相应的四边形的各边之间的关系.熟练掌握三角形以及梯形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

课题学习:
(1)如图1,E、F、G、H分别是正方形ABCD各边的中点,则四边形EFGH是
正方
正方
形,正方形ABCD的面积记为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(2)如图2,E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是
形,菱形ABCD的面积为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(3)如图3,梯形ABCD中,AD∥BC,对角线AC⊥BD,垂足为O,E、F、G、H分别为各边的中点.四边形EFGH是
形;若梯形ABCD的面积记为S1,四边形EFGH的面积记为S2,由图可猜想S1和S2间的数量关系为:
S1=2S2
S1=2S2

(4)如图4,E、G分别是平行四边形ABCD的边AB、DC的中点,H、F分别是边形AD、BC上的点,且四边形EFGH为平行四边形,若把平行四边形ABCD的面积记为S1,把平行四边形形EFGH的面积记为S2,试猜想S1和S2间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xoy中,矩型ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G

1.点C、D的坐标分别是C(       ),D(       )

2.求顶点在直线y=上且经过点C、D的抛物线的解析式

3.将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xoy中,矩型ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G

【小题1】点C、D的坐标分别是C(       ),D(       )
【小题2】求顶点在直线y=上且经过点C、D的抛物线的解析式
【小题3】将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2011年安徽省中考压轴题预测试数学卷 题型:解答题

如图,在平面直角坐标系xoy中,矩型ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G

【小题1】点C、D的坐标分别是C(       ),D(       )
【小题2】求顶点在直线y=上且经过点C、D的抛物线的解析式
【小题3】将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2011年安徽省中考压轴题预测试数学卷 题型:选择题

如图,在平面直角坐标系xoy中,矩型ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G

1.点C、D的坐标分别是C(        ),D(        )

2.求顶点在直线y=上且经过点C、D的抛物线的解析式

3.将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案