精英家教网 > 初中数学 > 题目详情
8.一次函数经过点A(0,2)且与函数y=-x相交与点B,已知点B的横坐标是-1,求该一次函数的表达式.

分析 先根据正比例函数y=-x的图象相交于点B,点B的横坐标为-1,求得B的纵坐标,然后把A、B的坐标代入y=kx+b,即可求得一次函数的表达式.

解答 解:∵函数y=-x图象经过点B,且点B的横坐标x=-1,
∴点B的纵坐标y=1,
∴点B(-1,1),
设一次函数解析式为:y=kx+b,
根据题意,将点A(0,2)、点B(-1,1)代入得:
$\left\{\begin{array}{l}{b=2}\\{-k+b=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=1}\\{b=2}\end{array}\right.$,
∴该一次函数解析式为:y=-x+2.

点评 本题考查了待定系数法求解析式,求得点B的坐标是待定系数求一次函数解析式的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.今年“十一”黄金周期间,吉首市共接待游客38.88万人次,388800用科学记数法表示为3.888×105

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,一次函数y=kx+b图象经过点A(-4,0)和点B(0,2).
(1)求一次函数解析式;
(2)若点P在一次函数图象上,且△AOP的面积为2,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,AB为⊙O的直径,CA为⊙O的切线,CB交⊙O于D,$\widehat{AD}$=$\widehat{DE}$,AE交BD于F,若DF=BF,则tan∠BDE的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,AB是⊙O直径,C为⊙O上一点,AD垂直过C点的切线于点D,连接BC,过C点作CF⊥AB于点F.
(1)求证:CD=CF;
(2)若∠B=60°,CD=2$\sqrt{3}$,求⊙O的半径OB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,等边△ABC中,点D、E、F分别同时从点A、B、C出发,以相同的速度在AB、BC、CA上运动,连结DE、EF、DF.
(1)证明:△DEF是等边三角形;
(2)在运动过程中,当△CEF是直角三角形时,试求$\frac{{S}_{△DEF}}{{S}_{△ABC}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.
(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;
(2)如图2,若$\frac{DE}{EF}=\frac{1}{2}$,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;
(3)若$\frac{DE}{EF}=\frac{2}{3}$,且点G恰好落在Rt△ABC的边上,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一次函数y=-x+5与y=2x-1的图象交点在直线y=kx-7上,则k的值为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图所示,某高校的教学大楼上竖有一根避雷针CD,小明为了知道避雷针CD的长度,在点A测得点D的仰角为30°,小明向大楼方向行进16m到达点B,又测得点C的仰角为45°,若大楼DE高度为24m,求避雷针CD的长度(结果保留根号).

查看答案和解析>>

同步练习册答案