精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现△ADQ是
等腰直角
等腰直角
三角形.
分析:首先根据题意画出图形,再根据矩形是轴对称图形可得线段垂直平分线MN为矩形ABCD的对称轴,然后可得AQ=DQ,再证明∠DAQ=45°,进而得到答案.
解答:解:如图所示:
∵MN是BC的垂直平分线,
∴MN是矩形ABCD的对称轴,
∴AQ=DQ,
∴∠QAD=∠ADQ,
∵AQ平分∠BAD,
∴∠DAQ=45°,
∴∠ADQ=45°,
∴∠AQD=90°,
∴△ADQ是等腰直角三角形,
故答案为:等腰直角.
点评:此题主要考查了复杂作图,以及垂直平分线的性质,关键是掌握矩形是轴对称图形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案