精英家教网 > 初中数学 > 题目详情

△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D(10,0).
(1)如图1,当点C与点O重合时,求直线BD的解析式;
(2)如图2,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的⊙B与y轴相切(切点为C)时,求点B的坐标;
(3)如图3,点C从点O沿y轴向下移动,当点C的坐标为C(0,数学公式)时,求∠ODB的正切值.

解:(1)∵A(4,0),
∴OA=4,
∴等边三角形ABC的高就为2
∴B(2,-2).
设直线BD的解析式为y=kx+b,由题意,得

解得:
∴直线BD的解析式为:y=x-

(2)作BE⊥x轴于E,
∴∠AEB=90°.
∵以AB为半径的⊙S与y轴相切于点C,
∴BC⊥y轴.
∴∠OCB=90°
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACO=30°,
∴AC=2OA.
∵A(4,0),
∴OA=4,
∴AC=8,
∴由勾股定理得:OC=4
作BE⊥x轴于E,
∴AE=4,
∴OE=8,
∴B(8,-4);

(3)如图3,以点B为圆心,AB为半径作⊙B,交y轴于点C、E,过点B作BF⊥CE于F,连接AE.
∵△ABC是等边三角形,
∴AC=BC=AB,∠ABC=∠ACB=∠BAC=60°,
∴∠OEA=∠ABC=30°,
∴AE=2OA.
∵A(4,0),
∴OA=4,
∴AE=8.
在Rt△AOE中,由勾股定理,得
OE=4
∵C(0,),
∴OC=2
在Rt△AOC中,由勾股定理,得
AC=2
∵CE=OE-OC=4=2
∵BF⊥CE,
∴CF=CE=
∴OF=2+=3
在Rt△CFB中,由勾股定理,得
BF2=BC2-CF2
=28--3=25,
∴BF=5,
∴B(5,-3).
过点B作BQ⊥x轴于点Q,
∴BQ=3,OQ=5,
∴DQ=5,
∴tan∠ODB==
分析:(1)先根据等边三角形的性质求出B点的坐标,直接运用待定系数法就可以求出直线BD的解析式;
(2)作BE⊥x轴于E,就可以得出∠AEB=90°,由圆的切线的性质就可以而出B的纵坐标,由直角三角形的性质就可以求出B点的横坐标,从而得出结论;
(3)以点B为圆心,AB为半径作⊙B,交y轴于点C、E,过点B作BF⊥CE于F,连接AE.根据等边三角形的性质圆心角与圆周角之间的关系及勾股定理就可以点B的坐标,作BQ⊥x轴于点Q,根据正切值的意义就可以求出结论.
点评:本题考查了等边三角形的性质的运用,勾股定理的运用,待定系数法求一次函数的解析式的运用,圆周角与圆心角的关系定理的运用,切线的性质的运用及直角三角形的性质的运用,解答时灵活运用勾股定理求线段的值是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知a、b、c是△ABC的三条边长,若x=-1为关于x的一元二次方程(c-b)x2-2(b-a)x+(a-b)=0的根.
(1)△ABC是等腰三角形吗?△ABC是等边三角形吗?请写出你的结论并证明;
(2)若代数式子
a-2
+
2-a
有意义,且b为方程y2-8y+15=0的根,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC是等边三角形,D、E分别是BC、CA上的点,且BD=CE.
(1)求证:AD=BE;(2)求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,
(1)用直尺和圆规作边BC的高线AD交BC于点D(保留作图痕迹,不要求写作法);
(2)若△ABC的边长为2,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•裕华区二模)已知,如图△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让△ABC在BC所在的直线l上向左平移.当点B与点E重合时,点A恰好落在三角板的斜边DF上的M点,点C在N点位置上(假定AB、AC与三角板斜边的交点为G、H)
问:(1)在△ABC平移过程中,通过测量CH、CF的长度,猜想CH、CF满足的数量关系;
(2)在△ABC平移过程中,通过测量BE、AH的长度,猜想BE.AH满足的数量关系;
(3)证明(2)中你的猜想.(证明不得含有图中未标示的字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB=AC,若要使△ABC是等边三角形,那么需添加一个条件:
AB=BC
AB=BC
∠A=60°
∠A=60°
(从不同角度填空).

查看答案和解析>>

同步练习册答案