精英家教网 > 初中数学 > 题目详情
20、探究学习:
已知a<0,-1<b<0,试比较a、ab、ab2的大小.
分析:先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.
解答:解:∵a<0,b<0,
∴ab>0,
又∵-1<b<0,ab>0,
∴ab2<0.
∵-1<b<0,
∴0<b2<1,
∴ab2>a,
∴a<ab2<ab.
点评:本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小杰和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:
“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH“
经过思考,大家给出了以下两个方案:
(甲)过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;
(乙)过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N;
小杰和他的同学顺利的解决了该题后,大家琢磨着想改变问题的条件,作更多的探索.

(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1);
精英家教网
(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图2),试探究EG、FH之间有怎样的数量关系,并证明你的结论;
(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为
5
2
(如图3),试求EG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
学习了无理数后,某数学兴趣小组开展了一次探究活动:估算
13
的近似值.
小明的方法:
9
13
16

13
=3+k(0<k<1).
(
13
)2=(3+k)2

∴13=9+6k+k2
∴13≈9+6k.
解得 k≈
4
6

13
≈3+
4
6
≈3.67.
问题:
(1)请你依照小明的方法,估算
41
的近似值;
(2)请结合上述具体实例,概括出估算
m
的公式:已知非负整数a、b、m,若a<
m
<a+1,且m=a2+b,则
m
a+
b
2a
a+
b
2a
(用含a、b的代数式表示);
(3)请用(2)中的结论估算
37
的近似值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

探究学习:
已知a<0,-1<b<0,试比较a、ab、ab2的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

探究学习:
已知a<0,-1<b<0,试比较a、ab、ab2的大小.

查看答案和解析>>

同步练习册答案