分析 (1)利用配方法将三项配方成完全平方式的形式,利用非负数的性质求得a、b的值即可;
(2)利用配方法把原式变形,根据非负数的性质解答即可;
(3)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;
解答 解:(1)∵a2+b2-2a+1=0,
∴a2-2a+1+b2=0,
∴(a-1)2+b2=0,
∴a-1=0,b=0,
解得a=1,b=0;
(2)∵x2+2y2-2xy+6y+9=0,
∴x2+y2-2xy+y2+6y+9=0
即:(x-y)2+(y+3)2=0
则:x-y=0,y+3=0,
解得:x=y=-3,
∴xy=(-3)-3=-$\frac{1}{27}$;
(3)∵2a2+b2-4a-6b+11=0,
∴2a2-4a++2+b2-6b+9=0,
∴2(a-1)2+(b-3)2=0,
则a-1=0,b-3=0,
解得,a=1,b=3,
由三角形三边关系可知,三角形三边分别为1、3、3,
∴△ABC的周长为1+3+3=7;
点评 本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com